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ABSTRACT

Nine volumes including this volume present the final report documentation outlining
the accomplishments for the "Cost Studies of the Multipurpose T.arge Launch
Vehicles" (MLLV). NASA/OART Contract NAS2-5056. This volume presents an
assessment of and application for the overall study results to show cost implications
of vehicle size, technology. configuration and program options,

The MLLV family will consist of a single-stage-to-orbit configuration plus other
configurations consisting of a main stage (as used for the single-stage-to-orbit
configuration) with various quantities of 260 inch diameter solid rocket motor (SRM)
strap-on stages and/or injection stage modules. The main stage will employ
LOX/LHg propellant with either a multichamber/plug or toroidal/aerospike engine
system. The single-stage-to-orbit configuration will have a payload capability of
approximately 500,000 pounds to a 100 nautical mile earth orbit. With the addition
of the st ap-on SRM stages and/or LOX/LHy injection stage modules this payload
capability can be increased incrementally to as much as 1.850.000 pounds,

The contract consisted of four study phases. The Phage I activity was a detailed
cost analysis of an Advanced Multipurpose Large Launch Vehicle (AMLLV) family

as previously defined in NASA/OART Contract NAS2-4079. Costs for vehicle design,
test, transportation, manufacture and launch were defined. Resource implications
for the AMLLYV configurations were determined to support the cost analysis.

The Phase II study activity consisted of the conceptual design and resource analysis
of a smaller or half size Multipurpose Large Launch Vehicle (MLLV) family.

"-he Phase Il activity consisted of a detailed cost analysis of the smaller Multi-
purpose Large Launch Vehicle configurations as defined in Phase II. Costs for
vehicle design, test, transportation, manufacture and launch were determined.

The Phase IV n~ctivity (as reported in this Volume) assessed the results of the study
including the implicaticns on performance, resources and cost of vehicle size.
program ontions. and vehicle configuration options. The study results provided
data in sufficient depth to permit analysis of the cost/performance potential of the
various options and/or advaaced technologies.
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FOREWORD

This volume, Cost Implications of Vehicle Size, Technology, Configuration. and
Program Options, is one of nire volumes documenting the results of a twelve
month study program '""Cost Studies of Multipurpose Large Launch Vehicles".
NASA/OART Contract NAS2-3056. The objective of this study was to define cost
cost sensitivities, and cost/size sensitivities of potential future launch vehicles
to aid in the guidance of current and future technology programs. The baseline
vehicles utilized to make this assessment were:

1. The Advanced Multipurpose Large T.aunch Vehicles (AMLI,V) as
defined under NASA/OART Contract NAS2-4079,

2, The Multipurpose Large Launch Vehicles (MLLV) as defined under
this contract and described in Volume II, ""Half Size
Vehicle (MLLV) Conceptual Design',
The program documentation includes this volume plus a Summary Voiume, a
Design Volume, a Resources Volume, Cost Volumes, an Advanced Techaology
Implications Volume, and Appendices Volumes, Individual designations for
these volumes are as follows:
Volume I Summary
Volume II Half-Size Vehicle (MLLV) Conceptual Design
Volume III Resource Implications
Volume IV  Baseline AMLLV Costs
Volume V Baseline MLLV Costs

Volume VI Cost Implications of Vehicle Size, Technology, Ccnfiguration,
and Program Options

Volume VII Advanced Technologv Implications

Volume VIII Flight Control and Separaiion, and Stress Analysis
(1Iaclassified Appendices)

Voluine IX Propulsion Data and Trajectories (Classified Appendices)
Data on the 260 inch diameter solid propellant rocket motor were obtained fron: the

Aerojet General Corporation, Data on the multichamber/plug propulsion system
were obtained from the Pratt and Whitney Division of the United Aircraft Corporation
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and the Rocketdyne Division of the North American Rockwell Corporation, Data on
the toroidal/aerospike propulsion system were obtained from the Rocketdyne Division
of the North American Rockwell Corporation.

These propulsion data were obtained from the propulsion contractors at no cost

to the contract. The material received encompassed not only the technical data,

but resources, costs, schedules and advanced technology information. This support
materially aided The Boeing Company in the preparation of a complete and meaning-
ful study and is gratefully acknowledged.

This study was administered under the direction of NASA/OART Mission Analysis

Division, Ames Research Center, Moffett Field, California under the direction of
the iechnical monitor, Mr. Edward W. Gomersall,

ix
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1.0 INTRODUCTION

This study was directed to define the economic aspects of a future launch vehicle
system, This work complements the previously completed technological study,
"Advanced Multipurpose Large Launch Vehicles", Contract NAS2-4079. (This

study is hereinafter referred to as the reference study. ‘t'he vehicle family defined
by this prior study is hereinafter referred to as the baseline AMLLYV family. )

The economic aspects to be defined included:

2. The non-recurring and recurring costs for implementation and operation
of the baseline AMLLV family,

b.  The non-recurring and re curring costs for implementation and operation of
a half size (MLLV) vehicle family, (Payload capability half that of the base-
line AMLLV family. )

c. Cost effectiveness of program and configuration options.

d. Cost/size implications, and performance,/cost implications of advanced
technology applications.

The baseline AMLLYV family as defined by the referenced contracted study consisted of:

a. A single stage to orbit baseline vehicle capable of injecting one million pounds
of payload into a 100 n. mi, low-earth orhit.

b. Injection stage modules which are additive to the main stage for increased
payload capability and payload mancuvering,

c. Strap-on solid or liquid propellant rocket motors for main stage thrust
augmentation to improve payload capability.

The design, test, manufacturing, handling and transportation, facilities and launch

plans developed under the referenced contracted study were used as a basis for
cost definition,

The baseline AMLLYV vehicle family is depicted in Figure 1. 0. 0. 0-1. Payload
performance for this family is summarized in Figure 1. 0. 0. 0-2.

The baseline MLLV family was that family defined by this study and shown in
Volume II. The basic MLLV vehicle configuration employed the following components:
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1.0 (Continued)

a. Main (Core) Stage - Sized to provide a single-stage-to-orbit payload of
approximately 500, 000 pounds. Propellants will be liquid oxygen (LOX)
and liquid hydrogen (LH»o). Two different engine systems, the multi-
chamber/plug (Pratt and Whitncey) and the torcidal/aerospike (Rocketdyne)
were considered for the main stage.

b. Injection Stage - A modular stage for increased payload capability and
maneuvering. The number of modules will vary from one to three. The
propulsion system will use high pressure bell engines of Pratt and Whitney
design. The propellants will use LOX, LH,.

c. Strap-On Stages - Sized to provide a payload to a 100 N, M, orbit of approximately
2,000, 000 pounds when used to augment the main stage with injection stage
modules. Solid rocket motors of 156 inch and 260 inch diameters were
considered.

The baseline MLLV vehicle family is depicted in Figure 1. 3. Payload

0. 0.
performance for this femily is summarized in Figure 1. 0. 0. 0-

0_.
4,
This volume, Cost Implications of Vehicle Size, Technology Configuration and
Program Options, presents an assessment of and applications for the overall
study results. The detailed cost analyses developed for the AMLLV and the MLLV

and reported in Volumes IV and V were utilized to conduct cost effectiveness and
parametric analyses of program, configuration, size and technology alternatives.

This volume is divided into eight sections. The first two sections outline and
summarize the remaining sections of the document. Section 3. 0 presents the
objectives, ground rules, guidelines and assumptions. As the cost data presented
here were strongly influenced by the utilization of specific design, resources and
cost ground rules, these ground rules (which were also reported in previous
volumes) are contained herein for ready reference. Section 4.0 presents the

cost magnitudes and distributions relative to program phases, vehicle stages and
elements, and cost categories. The effects nf learning curves on the recurring
costs of the various vehicle components are tabulated for both the AMLLV and the
MLLYV families. Methods for obtaining program cost for a specific vehicle confj-
guration or for a series of vehicles in a program are illustrated by representative
examples.

Section 3. 0 illustrates the method of using the cost information to determine the
cost effectiveness of the program and configuration options, Overall program costs
are shown for different program sizes utilizing different vehicles of both the
AMLLYV and the MLLV configurations. The cost impact of providing manufacturing,
test and launch facilities for the largest vehicle configuration (and then utilizing

the same facilities for a full range of vehicle configurations in the vehicle family)
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(Continued)

is compared to costs for providing similar facilities sized for a specific vehicle
configuration. The effects of the manufacturing and launch rate on overall program
cost, cstimated on the basis of historical data on the Soturn V program, are
presented. Performance and cost potential of various main stage engine options,
including various configurations of the multichamber/ plug propulsion system and
the toroidal/aerospike propulsion system are discussed. Other propulsion system
trades, as presented, included the use of liquid strap-on stages versus solid
propellant strap-on stages, the use of 156 versus 260 inch solid propellant

rocket motor stages and the effect of staged 260" SRM stages versus non-stages
260" SRM stages.

Section 6. 0 contains the methodology for cost effectiveness evaluation of alternative
technology applications. Parametric data which can be used to determine whether
the development of advanced technology is cost effective is presented. Technology
improvements are related to either improved mass fraction (weight improvements)
or propulsion performance (Ig,). Parametric cost curves as a function of perfor-
mance, size, etc,, for the baseline vehicles are shown. Costs of the major base-
line vehicle components (structure, engines, propellant, subsystems, etc.) are
deiined or moceled in terms of dollars per pound of baseline vehicle dry weight

or launch weight, The resulting parametric curves and associated data are used
in representative examples to assess the cost-effectiveness of potential technology
improvements,

Secticn 7. 0, Risks and Deletions, contains an estimation of those activities and
program options which may be deleted from the program thus improving the cost
effectiveness, With these deletions, of course, a greater risk is assumed. These
have been placed in order of probable increasing risk.

Section 8,0, Program Managers Assessment, presents a critical review of the data
and study results by the program manager and the members of the study team,
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2.0 SUMMARY

This volume presents a critical assessment of the overall study results to provide an
understanding of the cost implications of launch vehicle size, technology,
configuration and program options,

2.1 COST DISTRIBUTIONS AND SIZE IMPLICATIONS

To define the relative cost relationships for development, procurement, and operation
of the baseline MLLV and AMLLV families, the '""modularized" costs (and supporting
resource data) of the two vehicle families were collected and categorized, during the
ccurse of the study activity, by three program phases, i.e.:

Phase A "Get Ready" Phase

This category includes non-recurring costs for vehicle design,

and for the tooling, equipment and facilities required for production
and launch,

Phase B Development Test Phase

This category includes the non-recurring costs for all development
test activity required to develop and qualify the launch vehicle, its
components and the associated support hardware for manned flight.

Phase C Operational Program Phase

This category includes all of the recurring costs for manufacture
and launch of the operational vehicles.

The distributions of program costs showed that the percentage of overall program
costs attributable io each of these phases was approximately the same for both the
AMLLV and MLLV programs. This is indicative that the relative distribution of
costs by program phase will be independent of vehicle size. Generally, the non-
recurring costs (the sum of the A and B costs) will be approximately 11 tim-s those
of the first operational unit cost. The Phase A costs will be approximately 4 1/2
times and the Phase B costs will be 6 1/2 times those of the first operational unit.
respectively. The relative distribution of c3sts by program phase does not appear
to be sensitive to complexity, as the relative distribution of the costs for the
three program phases were generally the same for the main stage, the injection
stage and the sciid rocket motor strap-on stages.

Magnitude of uverall cost appears to be primarily influenced by the complexitv of
the structure or system to be built and secondarily influenced by the difference

in size. For example. the cost for the injection stage module will be approximate!v




2.1 (Continued)

the same as that for a strap-on solid rocket motor (SRM) stage even throuzh the
weight of an individual SRM stage will be approximately seven times that of ..
fueled injection stage module.

The overall magnitude of the costs will be significantly larger for the main stage
as the main stage not only is the more complex stage but is also the primary stage
of the launch vehicle and, therefore, must absorb a significant portion of the costs

for program management, system engineering, launch facilities and liquid stage
manufacturing and test facilities,

Further, the magnitudes of the costs in Phases A, B, and C will not be significantly
sensitive to the relative size of similar articles. For example, the half size (MLLV)
main stage costs for these phases will be approximately 85 percent those of the full
size (AMLLV) main stage.

The magnitude of component costs in Phases A and C will, however, be more nearly
directly related to the quantity required per operation vehicle. For example, the
magnitude of engine and SRM costs per vehicle will be almost directly related to the
number required per vehicle.

The magnitude of the component costs for Phase B will not be sensitive to the quantity
required per vehicle. For example, the development test costs for the SRM stage
will be approximately the same regardless of the quantity to be used per vehicle,

As will be discussed subsequently, the magnitude of the A and C costs for a vehicle
program will be strongly influenced by the anticipated production and launch rate.
The magnitude of the development test or B costs, however, will be insensitive to
the anticipated production and launch rate.

The two R&D flight tests specified for the development test program will represent
approximately 25% of the overall non-recurring costs required for either of the two
vehicle systems. If useful payloads could be flown on the R&D test flight vehicles.
program costs could be substantially reduced.

The addition of either injection stages or SRM stages to the primary main stage will
not significantly increase the magnitude of the non-recurring program costs. For
example, non-recurring costs for the main stage alone will be 36 percent of those
for the main stage and SRM stages.

10
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2.1 (Continued)

The distribution of Phase A c.usts by cost categories (i.e.. manpower. material.
tooling. facilities and equipment) indicates that a significant portion of the A costs
will be attributable to facilities and equipment. The next largest cost category will

be tooling. The tooling costs will be the most sensitive cost category relative to
vehicle size, even though they will be reduced by only 28 percent as the
vehicle size is reduced by 50 percent.

A major porticn of the Phase A costs will be involved in the provision of the launch
facility. These costs will represent approximately 45 percent of the total get ready
costs for the MLLV and AMLLYV single-stage-to-orbit vehicles. As the injection
stage will be the same diamecter as the main stage, and will fit atop the main stage
without significantly increasing the length of the vehicle, its effect on launch facility
costs will be negligible. For use of the SRM strap-on stages. however, a significant
increase in the launch facility will occur.

The relative distribution of costs by program cost categories and elements (i e.,
structures, engines, systems, etc.) will be generally the same as that of the two
stage Saturn V for both the MLLV and AMLLYV single-stage-to-orbit vehicles. The
engine systems. however, for the AMLLV and MLL"’ vehicles will represent a

larger percentage of the overall operational program costs than do those of the

Saturn V. This is attributable to the number of engines involved. For the MLLV

and the AMLLV. 24 individual engines will be used for each main stage. By compari-
son, the two stage Saturn V has a total of 10 engines for both stages.

2.2 COST EFFECTIVENESS OF PROGRAM AND CONFIGURATION OPTIONS

The specific payload requirements, in terms of required payload weight per laurch
will have a major influence on the choice of the vehicle configuration to provide the
most cost effective program. However, the cost per pound of delivered payload
generally will decrease as the required payload weight per launch is increased.

In other words, the lower payload single-stage-to-orbit vehicles will be the least
cost effective vehicles in the MLLV and AMLLV families, Cost effectiveness will
improve as SRM strap-on rocket motors are added to the main stage.

Only small operational programs will be required to amortize the additional non-

recurring costs for development and implementation of-the strap-on stages (i. e.,

programs requiring three million pounds of payload to orbit for the MLLV and six
million pounds of payload to orbit for the AMLLV).

Use of the injection stage as a propulsive element to increase payload to a 100 N, M.,
orbit will never be as cost effective as utilization of the SRM strap-on stages or an

increase in the size of the main stage. For this reason, use of the injection stage

should be considered only, after achievement of orbit, for payload maneuvering
or for missions beyond earth orbit. (The injection stage should be considered




2.2 (Continued)

as part of the payload to orbit rather than as part of the propulsion svstem to
achieve orbit.)

The operational cost effectiveness values of all of the possible configurations in the
MLLV family were compared (1) to those of configurations in the AMLLYV family

and (2) to those of the two stage Saturn V vehicle and its potential uprated deriva -
tives employing 156 inch and 260 inch diameter SRM strap-on stages. This comparison
lead to the very significant study conclusion that, for a given payload per launch
requirement. operational costs will not be significantly influenced by the choice of
any specific launch vehicle configuration with the capability of providing the required
payload. Operational costs do not appear to be sensitive to design or configuration
options. (Costs are, however. sensitive to payload size as discussed below. )

This conclusion assumes that all possible configurations will be produced and
operated within the same program philosophy, limitations and ground rules.

The data showed that improved cost effectiveness (as stated above) will be obtained
as the payload per launch requirement in increased. In other words. there appears
to be a "quantity discount' relative to larger sized payloads. This quantity discount
is based on the assumption that whatever size vehicle is used, the same production
and launch rate will be maintained .

This study, as well as prior experience with the Saturn V and other programs, showed
that the cost of a launch vehicle will be significantly effected by the production and
launch rate. A primary factor causing increased cost at low rates is the inflexibility
within the current manufacturing and launch philosophy relative to the use of personnel
and skills. The costs for a full complement of personnel and skills, (required at the
production and launch facilities regardless of the rate) will significanily increase the
unit cost at low rates. A major factor in reducing costs would be an increase in the
production and launch rate from approximately two vehicles per year to approximately
six vehicles per year.

The cost trades of engine options showed that program costs were only slizhtly
effected by the various possible adaptations to either the multichamber/plug or
toroidal/aerospike engine systems in terms of size of the engine systems, operating

pressure, number of modules, etc.

The engine option trades indicated that lower operational cost will result from the

use of the larger and/or higher performance engine options with both the single-stage-
to orbit vehicles and vehicles containing strap-on stages, For example,

operationally it will be more cost effective to use the higher performance

2000 psi toroidal/aerospike engine with eight modules, each rated at 2

million pounds thrust than to use the lower performance 1200 psi modules

rated at 2 million pounds thrust or the higher performance 2000 psi toroidal/
aerospike engine with 16 modules rated at 1 million pounds thrust each.

12
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2,2 (Continued)

The above conclusion assumes a moderate or large operation, However,

for small operational program sizes which cannot effectively amortize the
higher non=recurring cost of the larger nigher performance systems, the lower
performance, lower thrust, systems will be more cost effective.,

Jf low cost liquid stages can be developed and procured at the same price as the SRM
strap-on stages. a minor reduction in program cost will occur, attributable to easier
transportation and handling of the lighter weight (empty) liquid stage. The transportatio
and handling costs for use of either of these stages will be so nearly the same. howcier.
that no significant cost advantages can be attributed to either system.

The use of 260 inch diameter SRM's will be more cost effective than the use of
equivalent performance 156 inch diameter SRM's for an operational program. Although
the non-recurring costs for the 156 inch SRM's will be less than that of the 260 inch
SRM's, the lower production costs of the 260 inch SRM's will make them become

more cost effective as program size increases. Again, as with the liquid engines.

the cost trades tend to favor the larger sizes over the smaller sizes.

The baseline program calls for use of the solid rocket motor strap-on stages in a
"zero' stage mode wherein all of the SRM's will be ignited at liftoff and separated

at the same time after burn out. A sequential staging concept such that approxi-
mately 3/4 of the quantity of SRM's would be ignited at launch and the remaining 1/4
ignited after burnout of the initial 3/4 would in effect provide a three stage vehicle and
increase the payload capability by better than 10%. This alternative concept would only
slightly increase the program cost but would provide a significant improvement in
payload and, therefore, is an attractive option for the vehicle system.

2.3 COST EFFECTIVENESS OF ALTERNATE TECHNOLOGY APPLICATIONS

Parametric cost and performance data and its application show the maximum dollars
that can be spent for an alternative technology for any specified vehicle program.
These data (1) relate the required main stage size for a given payload to specific
impulse and mass fraction, and (2) show the relationships of program cost to main
stage size.

The data relative to improvements in structural efficiency indicate that the programs
with single-stage-to~orbit vehicles will be more cost sensitive to improvement or
degradation in mass fraction than those programs employing vehicles with strap-on
stages. Similar analyses showed that the AMLLV and MLLV single-stage-to-orbit

13
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2.3 (Continued)

configurations will be more cost sensitive to changes in specific impulse than will
configurations with strap-on stages.

Application of the mass fraction and specific impulse changes show the following
cost effects for a program to place 20 million pounds of payload in orbit. For the
AMLLYV single-stage-to-orbit vehicle, a 0.02 improvement in mass fraction will
result in a program cost reduction of seven percent. Similarly, a five percent
improvement in specific impulse will reduce the program costs by five percent.

A degradation of five percent in specific impulse will increase the program cost
6.5 percent,

2.4 COST REDUCTION ANALYSIS

Cost reduction of the baseline programs can be achieved through configuration
modifications and/or changes in program philosophy relative to design, manufacturing,
and test and launch, Changes in program philosophy will, however, be much more
cffective in reducing costs. Philosophy changes include such things as utilization of
the two R&D flights to deliver unmanned but usefui payloads; modification to the
manufacturing and launch procedures used with low production and launch rates,

to provide more effective utilization of personnel and skills; deletion of the facility
checkout vehicle (the first R&D flight vehicle would be used for facility checkout);
reduction in instrumentation; deletion of redundant components; reduction of post-
manufacturing checkout; deletion of dynamic tests; deletion of static firing acceptance
tests; reduction of tolerances; and reduction of the safety factor from 1.40 to 1,25,
(The above are listed in order of increasing risk as the list progresses,)

A cost reduction of approximately 40% appears possible for a typical program to
develop and launch 36 MLLV single-stage~to-orbit vehicles. The resource and
cost analyses of this study were accomplished on the basis of the existing techniques
utilized for the Saturn V launch vehicle. Similar cost reduction methods have been
proposed for the Saturn Vbut have yet to be implemented.

14
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GROUND RULES, GUIDELINES AND ASSUMPTIONS

The guidelines and assumptions for this study were developed from the contractu
requirements, the previous AMLLYV study (NAS2-407y), and applicable data fror.
previous and current studies. Where special circumstances dictated an arbitrar

assumption, The Roeing Company and the NASA technical monitor concurred on o
suitable guideline.

T'he resource plans were based on current Saturn V philosphies to the maximum
extent possible. No attempt was made to tailor the program for cost optimization.

Where possible, the cost estimates were based on direct costs with burden costs
added as separate items.

Resource inputs for recurring and non-recurring items were received from function:]
organizations within The Boeing Company and from propulsion contractors (Aerojet
General, Pratt and Whitney, and Rocketdyne). Most of the direct inputs were in
terms of manhours; however, total dollar costs were also received for several items,
I, e., material, equipment, engines, etc,

The Roeing Manufacturing Departments at the Michoud Assembly Facility and at
Huatsville provided manhours and material estimates for the following itemns:

1) Fabrication, Major and Minor Assembly of the Sub-System Components, 2)
Manufacturing Test Manheurs, 3) Raw and Production Material, 4) Planning
manhours, 5) Tool Design manhours, 6) Tool Fabrication and Erection hours,

7) Manufacturing Development hours, and 8) MGSE and Handling/ Transportation
Equipment hours and doliars,

The Boeing Huntsville Engineering Department provided basic engineering design and
sustaining engineering manhours. The Boeing Facilities Department at Huntsville,
BATC and Michoud provided costs of the brick, and mortar facilities for production,
test and launch: transportation and handling equipment: capital equipment and
maintenance costs. The Boeing Test Organization at Huntsville provided

manhours and costs for conducting Developmental Testing, Structural Tests,
Systems Development (Systems Breadboard), Systems Tests, Dynamic Tests,
Marufacturing Development and Wind Tunnel Tests.

The Boeing Engineering Department at BATC provided costs for Launch
Operations and Launch Vehicle Ground Support Equipment (LVGSE) and Test
Equipment.

The propulsion contractors provided costs for the solid rocket motors, toroidal/
aerospike engine ard the multichamber/plug engines. The liquid engine data
was supplemented with data received from the Propulsion Otfice at NASA /MSFC.




3.0 (Continued)

The details associated with these direct inputs are displayed and summarized in
the ""Resources Implications' Volume III of this report.

The following ground rules, guidelines, and assumptions were utilized for
this study activity, "Cost Studies of Multipurpose Large Launch Vehicles"

Contract NAS2-5056:

a. Design

1. Direct ascent to 100 nautical mile circular earth orbit was the primary
mission used to size and establish the baseline vehicle design, to establish
the trajectory for heating and control analyses, and as the reference
for performance comparisons.

The vehicles will be launched due east from AMR.
Payload configurations will be as follows:

a. The payload, exclusive of the nose cone, will have a constant
diameter.

b. Uniform distribution of mass within payload envelope was assumed.

Stages and vehicle subsystems will be expendable.

All study vehicles will be manrated. The design criteria and the
necessary combination of ground and flight testing were defined
based on those established for the Saturn IB/Gemini and Saturn V/
Apollo systems.

Test

Present NASA/MSFC and KSC test philosophies will be continued.

Two R&D flight tests will be required to qualify the vehicle. The
development test program for either the AMLLV or the MLLV will
provide for two unmanned flight tests of the maximum size configuration
in the selected vehicle family.
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(Continued)

A facility checkout vehicle will be provided for initial checkout of the
manufacturing, test, and launch operations, tooling, equipment and
facilities,

A dynamic test will be included in each program (either AMLLV or
MLLV) for the maximum size vehicle (strap-ons will be simulated).

Development testing of the main stage and injection stage will be
conducted in new dvnamic and structural test facilities constructed

adjacent to the factory huilding.

The solid motors will require a development program and qualification N
testing.

Engine acceptance test firing and trim by engine contractor will be
required.

Static test firing will be required for final acceptance of the main stage
and injection stage.

Static test firing will be conducted on the launch pad.

All subsystems functional and acceptance testing will be performed
by the vendor except as noted.

Manufacturing

1.

S

All stages will be built in factories adjacent to navigable waterways.

Main stages and injection stages will be fabricated at the NASA Michoud
site (or its equivalent located on a navigable waterway) in a new factory building.

The 260 inch diameter solid rocket motors (SRMs) will be manufactured
at the Aerojet General Facility in Dade County, Florida.

The 260 inch SRM strap-on stage structural assemblies, consisting of the
nose cone, forward skirt, aft skirt and attachment fittings will be
fabricated at Michoud and sent to the SRM contractors facility at
Homestead, Florida for assembly to the solid rocket motor.

Transportation

1.

The vehicle elements will be transported from the manufacturing facilities
to the launch facility on tocwed barges.

17
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{Continued)

Land transportation will be required for the main and injection stages
at the manufacturing facility (but not at the launch site).

At the launch facility all stages will be lifted directly off their barges
and placed in the selected location by a large traveling gantry hoist;
therefore, no additional transportation equipment will be required.

The requirements for transporting and handling the elements of the
half size (MLLV) vehicle will be the same as those of the full size
(AMLLYV),

No land transportation of the SRM stage will be required, as it will
be lifted directly from the manufacturing pit and placed aboard the
towed barge used for transport to the launch facility.

The barges used to transport the SRM stages from the manufacturing
site to the launch pad will also serve as storage facilities. These barges
will be anchored in prote .ted, yet remote locations, and towed to the
launch pad as required for vehicle assembly.

At the launch site, the SRM's will be lifted directly from the barge and
placed in position on the launch pad by a mobile overhead gantry crane.
This same track mounted gantry will also be used to lift the main and
injection stages.

Launch

[

The launch pad will serve as the static firing stand for main and injection
stages, the refurbishment facility, the vertical assembly and checkout
facility and finally the launch pad.

The launch site will be in the vicinity of Cape Kennedy to share the
utilization of the available support facilities, support personnel,
and existing tracking networks.

Although the acoustic siting criteria indicate that an off-shore

site is required, an on-shore site was specified to provide comparable
facility, equipment, tooling and cost requirements to those of existing
systems,

Mating of the SRM and injection stages to the main stage will be at the
launch pad. Final vehicle assembly and checkout will be in the launch
position.

18
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(Continued)

Cost

All propulsion costing, performance, and design data necessary in the
evaluation were compiled from appropriate propulsion contractors
(i.e., the contractors specifically working on the respective systems).

Costs were based on 1968 dollars without an inflationary factor. Funds
were assumed to be available as required.

Launch and production rates will be two vehicles per year,

All cost values in this report are contractors cost values only and do

not include profit or fee, with the exception of the Solid Rocket Motors
and liquid engines.

The first unit has been defined as the first flight vehicle: (the first R&D
flight test) effects of learning curve(s) enter after that unit.
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COST DISTRIBUTIONS, SIZE IMPLICATIONS, LEARNING CURVE
EFFECTS AND METHODS FOR COMPILING PROGRAM COST

This section summarizes the input cost data and shows the distribution of costs h
1) program phases, 2) vehicle stages and elements, and 3) cost categories, The
implicaiions of vehicle size on the costs and their distribution are illustrated an
discussed. The effects of learning on recurring costs are tabulated and graphi-
cally illustrated to provide tools for conducting cost cffectiveness analyses as
discussed in subsequent Sections 5. 0 and 6. 0. Methods are given for compiling
overall program costs.

The "modularized" cost data shown in detail in Volumes IV and V are summarized
by program phases and stage and program elements in Figures 4. 0. 0. 0-1 through
4.0.0.0-3. The costs shown are additive i.e., the Phase A costs for an MLLV
vehicle incorporating a n.ain stage plus an injection stage engine module plus two
injection stage fuel modules plus four strap-on stages can be determined by adding
the main stage costs (Column I) plus the injection stage engine module costs
(Column II) plus twice the injection stage fuel module costs (two times Column II)
plus the strap-on stage fixed cost (Column IV) plus one-haif the variable cost of
eight strap-on stages (one-half of Column V). The same addition is possible to
determine the program buildup for Phase B costs. To determine the overall
program costs for Phase C, however, learning effects must be applied to the
multiples of stages required for the program. These effects and their application
are shown and discussed in Sections 4. 2 and 4. 3.

The results of adding the various elements (with appropriate learning curve factors
as applicable) to determine Phase A, B and C costs are summarized in Figure
4.0.0.0-4. This chart shows, for example, that the total non-recurring costs
(Phase A costs plus Phase B costs) for an MLLV vehicle consisting of a main

stage plus eight SRM stages plus a three module injection stage will be 4.09 billion
dollars. The recurring cost of the first operational vehicle will be 372 thousand
dollars. Similarly, the recurring cost of the first operational MLLV single-stage-
to-orbit vehicle will be 251 thousand dollars. The non-recurring costs for develop-
ment of this vehicle (not shown on figure) will be 2.78 billion dollars.

4.1 COST DISTRIBUTIONS AND VEHICLE SIZE IMPLICATIONS

The detailed '""modularized' cost data shown in Volumes IV and V were analyzed to
determine the distribution of costs relative to:

a. Program Phases
1. "Get Ready" costs (A costs)

2, Development test costs (B costs)
. First operational unit costs (C costs for the 3rd flight unit)
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Launch Maint. $4,182 Launch Control
$8,750 4 21.090
1,025
750
$8, Lm.lsl;’clh 2(‘scgntrol f.aunch Pad
. 2,066
Facility & Transp. $29,384 :2’021
$4,380 :
52 972 L?:;nldéo};ad Off Site Support
2, ' $3,180
L $57,93¢2 $2,999
SE&I Off Site Support . —
$5,301 $91,448
$5,301 $85,962
FOLDOUR FRAME |




J oI 1V v
FTRAP-ONSTAGH  [BTRAP-ON STAGH
Fue! Module FIXED QUANTT™Y
314,526 $24. 478 138, 603

Structures 1 Delta Fwd. Skt, Structur s
Fwd. Skt Fwd. Skt.
$1. 369 $7,000 $1, 320 $4,630 $38, 183
$844 $4,618 $798 $2,960 $21,21°F
y LH, Tank
— Igg s’l;.';m Syatems 822. 230 Launch Maint, Motor
51', 774 $2,575 ‘ $1,425 $1, 150 $82,070
LOX Tank $2,411 LOX Tank $1,150 44,308
$1,979 $1,627
$1,358 Engines $1,006 Launch Ops. Other Stage
Tunnels $3,600 T\;r;r;)ls $26,063 $17,306
igﬁ $2,500 $319 $20,378 $11,828
Thrust Str. Engine Instali, Str. Assembly Fac. Maint.
$1,767 367 $1,263 $1,104
1,17
$1,175 $67 $1,172 $733
Str. Assembly = PRTITS e
$2,578 > t TOp. ech. Launch Contro
$2,179 Propellan $1,436 $2,886 *NUMBERS SHOWN ARE
, 3730 $1,328 $2,733 FOR A FULL COMPLEMENT
$365 OF STRAP-ON STAGES
- P ™ (120R 8). IF LESS THAN
Launch Ops. s674 % 390 A FULL COMPLEMENT
$5,323 . : WILL BE UCFD, THESE
Instru. Off Site Support NUMBERS 8:. ‘LD BE
$4,565 $301 $8,506 REDUCED BY THE RATIO
$285 $7,996 OF THE NUMBER OF
Flt. Control STRAP-ON STAGES PER
$128 VEHICLE TO THE NUMBER
$124 OF 8TRAP-ON STAGES IN
A FULL COMPLEMENT,
NOTES: [ _ _ _ _JALTERNATE SYSTEMS.
Launch Control # DOL LARS ARE IN THOUSANDS.
3545 @AMLLV COSTS 8HOWN TO TOP
12 @MLLV COSTS SHOWN TO BOTTOM
Launch Pad
$1,033
$1,011
Off Site Support
$1,595
$1,499

FIGURE +.0.0.0-3 FIRST UNIT COST ("C" COST) SUMMARY (APPLICABLE TO FIRST
R&D FLIGHT VEHICLE ONLY)
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4.1 (Continued)
b, Program Elements
1. Stage costs - Main stage, injection stage, strap-on stage, cte.

2, Component costs - Structures, propulsion and mechanical, electricsl
and electronic, etc.

3. Operations costs - Manufacturing, test, transportation, launch, etc.

c. Cost Categories

Labor
Material
Tooling
Equipment
Facilities

[N

Ol = W
o & o

The resulting data is summarized in Figures 4,1. 0. 0-1 through 4,1, 0. 0-10. Figure
4. 1. 0. 0-1 shows the apportionment of stage costs by program phases. Figure

4. 1, 0, 0-2 shows the stage cost distribution by program phases for the maximum
size AMLLV and MLLV vehicles, These figures indicate that the costs for the

main stage development and operation with an MLLV or AMLLV maximum size(l)
vehicle will be approximately two-thirds of the total A, B and/or C costs. Costs for
the three module injection stage and for the full complement of strap-on stage will
be approximately one-fifth and one-eighth of the total costs respectively.

The majority of the costs are attributable to the main stage because the main
stage is the primary stage of the launch vehicle and, therefore, must absorh a
significant portion of the fixed program costs associated with:

a, Program Management and System Engineering.

b. Liquid stage manufacturing and test facilities (construction, checkout,
operation and maintenance).

C. Launch facility (construction, checkout, operation and maintenance),

The apportionment of costs by program phases and stages provided the following
relationships:

MLLV AMLLV
a, Main Stage
A
C (3rd Flight Unit) 4. 40 4, 52
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(Continued)

B
C (3rd Flight Unit)

A+ B
C (3rd Flight Unit)

A

B 0. 66 0. 65
NOTE: (1) Maximum size vehicle refers to a vehicle incorporating a main stage
plus a three module injection stage plus a full complement of strap-on stages,

b. Injection Stage (Three Module) MLLV AMLLV

A
C (3rd Flight Unit)

B
C (3rd Flight Unit)

A+B
C (3rd Flight Unit)

A

B

Strap-On Stages (Full Complement)

A
C (3rd Flight Unit)

B
C (3rd Flight Unit)

A+ B
C (3rd Flight Unit)

A

B




4.1 (Continued)
VvV
d. Maximum Size Vehicle MLLV AMLL
A
C (3rd Flight Unit) 4. 35 4. 07
B
C (3rd Flight Unit) 6. 63 6. 44
A+ B
C (3rd Flight Unit) 10.98 10.51
A
B 0. 66 0. 63

B costs used for the above ratios include the costs of two R&D {light tests of a
vehicle incorporating a main stage plus a three module injection stage plus the
maximum complement of strap-on stages. The cost data presented in Figure

4.1. 0. 0-3 shows that the costs of the two R&D flight tests represent approximately
one-fourth of the non-recurring costs for either the MLLV or AMLLYV vehicle
families.

If useful payloads could be flown on these R&D flight test vehicles, the non-recurring
costs would, therefore, be reduced by a factor of 257%. This overall savings would
not, however, be realized within the total program costs as the costs of the first

two flight units would increase by approximate'y 10% to account for position on the
learning curve, the additional time for the initvial launch cycles and the additional
instrumentation requirements.

Figure 4. 1. 0. 0-4 shows the stage costs for phase A distributed by the major
program elements. These costs are modularized and presented in such a manner
thiit they can be added. The solid rocket motor strap-on stage ''A" costs are for
the maximum vehicle configurations, i.e., eight MLLV and twelve AMLLV strap-on
stages, "A' costs for the injection stage fuel modules are for design effort

only, as the facilities provided for the engine module of the injection stage will be
adcquate for production and operation of the fuel modules.

The "B'" costs for the various vehicle stages are displayed in Figure 4,1, 0, 0-5, These
costs are distributed by costs attributable to each of the major development tests.

The basic approach used in compiling the non-recurring cost data shown in Figures
4.1.0.0-6 through 4.1.0.0-9 assumed that all launches will be made using only one

of the several possible MLLV configurations shown. All included costs relate to
facilities, equipment and tooling sized for production and launch of only the configura-
tion being used. The two R&D flighi test vehicles are of the specific operational
vehicle to be flown,
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4.1 (Continued)

These figures show that the non-recurring cost for implementation of the injection

slage are basically the same as for the solid rocket motor stages. They further

show that the hon-recurring costs will be relatively insensitive to the number of injection
stage modules -.nd/or the number of SRM stages to be used for the vehicle configurations,

The costs for flight test portion of the development test preogram will exceed the
development test costs for either structures and systems or the propulsion systems,.
The flight test costs are approximately 40 to 50 percent higher than the test costs

for structures and systems development and 100 to 160 percent higher than the

costs for propulsion system development. The development test costs for the
structures and systems exceeds the development test costs for the propulsion systems
by approximately 50 percent for the single-stage-to-orbit configuration and by

30 to 50 percent for the other configuration.

Another approach (not shown) would assume that all program support elements

will be sized for the maximum configuration and that all other configurations can be
produced and launched for various mixes of launch vehicle within a program. The two
R&D flight vehicles are of the maximum payload configuration.

For this approach which would assume that capability for launching the maximum
configuration must be maintained, the '"A" and '"B" costs will be constant for ail
configurations and the same as those shown for the maximum configuration in the
afcrementioned figures,

"C'" costs by program element for the first units of both vehicle families are shown
in Figure 4.1.0,0-10. (To use these data in development of a total program cost,
that requires multiple launches, appropriate learning curves must be used for obtain-
ing the overall program operational costs. )

The atove refercnced figures also show the relationship of the cost distributions to

vehicle size. From these data the following cost/size/phase relationships were
determined.

Phases

B

MLLV Main Stage
AMLLV Main Stage

MLLV Injection Stage Engine Module
AMLLYV Injection Stage Engine Module . 799

MLLV Injection Stage Fuel Module
AMLLYV Injection Stage Fuel Module 1. 000
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4.

1 (Continued) PHASES
A B C

MLLV Three Module Injection Stage
AMLLV Three Module Injection Stage . 799 . 730 779
MLLV Strap-On Stage
AMLLV Strap-On Stage . 868 . 693 . 844
MLLV Full Complement of Strap-on Stages
AMLLV Full Complement of Strap-on Stages. 817 . 692 . 565

NOTE: All of the above relationships relate to a 50’ size reduction except
for that of the individual strap-on stage which relates to a 239
size reduction,

As these numbers indicate, a 50 percent reduction in the main stage size will
result in only a 15 percent reduction in the main stage recurring costs while a

50 percent reduction in the injection stage size will result in approximately a 20
percent reduction in injection stage recurring cost and a 23 percent size reduction
for an individual strap-on stage will result ina 16 percent reduction in cost

(a 557 cost reduction fur a 50 percent size reduction). The basis for this anomaly
(as stated above) is that the main stage, as a primary vehicle stage, must absorb
a significant portion of the fixed non-size sensitive cost associated with facility,
maintenance and operations, The cost of the full complement of strap-on stages
for the half size vehicle will be only 60 percent that for the full size vehicle.

This significant reduction in strap-on stage costs is due to the combination of:

(1) the effects of size reduction of the individual stages and (2) the reduction in
number of required strap-on stages from i2 to 8.

Figure 4.1.0.0-11 through 4, 1.0.0-13 show the distribution of costs by cost
categories by stage by program phase. The distribution of costs to the cost
categories was accomplished by reviewing each individual entry in the back-up
detailed cost sheets in the AMLLV and MLLV baseline costs contained in
Volumes IV and V, respectively. Assignment of a specific cost entry to a given
cost category was based on an individual judgement of each entry. Some of these
assignments required arbitrary assumptiona which would effect the total
distributions shown, For example, mannower and vehicle material as shown,
relate only to that manpower and vehicle material to be expended to des ign, test,
build and operate the vehicle, Manpower required in support of the other
categories, i.e., tooling, material, facilities and equipment is included in the
cost of those items as applicable. For example, manpower for tool design is
shown as a tooling cost, Similarly, material required for tooling is shown as

a tooling cost, Material costs as assigned to the vehicle material category
reflect all costs for purchases material (inclusive of purchased assemblies and
subsystems) to be used to design, test, manufacture and operate the vehicle,
SRM and liquid engines for this distribution were not considered purchased

14




b (Continued)

assemblies (vehicle material) but were further broken down into the manpower,
material, tooling, fabrication and equipment by categories. All systems and
subsystems, on the other hand, were classified as vehicle material exclusively,

The distribution of Phasc A costs by cost category as shown in Figure 4,1,0.0-11
indicates that a significant portion of the "Get Ready' costs will be attributable

to Facilities and Equipment. The next largest cost category will be tooling,
Of the cost categories shown, the tooling costs appear to be the most sensitive to
vehicle size, Tooling costs will be reduced by 28 percen¢ as the
vehicle size is reduced by 50 percent while the total A costs will be reduced by
only approximately 17, for a similar size reduction. The costs for veiiicle
material will be negligible. Program management and engincering design costs

will represent approximately only 1.2 percent and 5.0 percent respectively
of the total Phase A costs.

14

The ratio of MLLV costs to AMLL" costs for the main stage, for the three module
injection stage, and the full complement of strap-on stages will vary between

80 and 83.5 percent. This is indicative of the fact that the major cost elements
are relatively independent of size. Only a slight differcnce in the costs for
equipment and the facilities, tooling, and material will occur between the MLLV
and the AMLLV sizes, The manpower requirements will be essentially the

same regardless of the size,

Figure 4,1,0.0-12 illustrates the distribution of costs by categories for Phase B.
These costs include not only the costs for conducting the test, but also the costs.
required to provide the test specimens. The development test costs for the MLLV
single-stage-to-orbit will be 81,5 percent those of the AMLLV, Similar
comparisons of the devclopment test costs of the MLLV and AMLLYV threc module
injection stages and full complements of strap-on stages showed the ratios will

be 74.1 and 69,2 percent, respectively, For all stages of the vehicle, the tooling
and facilities equipment costs will be essentially identical regardless of the

size. A relatively significant increase will occur for material costs for the
larger vehicle. The major difference in MLLV and AMLLV SRM stage costs

can be attributed almost entirely to the increased propellant that will be required
in cach test SRM. The manpower costs which represent the major portion

(70°.) of the liquid stage B costs will increase only slightly as the size goes up.
This is the effect of increased manpower requirements for manufacturing operations,
test and quality and reliability assurance, As most of the SRM stage test
components will be purchased, material costs for the SRM exceed the manpowaer
costs. The management and administration and the vehicle engineeling are
esgsentially the same.
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LEGEND:
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\ Q&RA

\ [:] MATERIAL
\ TOOLING

@ FACILITIES & EQUIPMENT
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TO ORBIT INJECTION STAGE OF STRAP-ON
STAGES

FIGURE 4.1.0.0-12 DISTRIEUTION OF COSTS BY CATEGORY FOR PHASE B




4.1 (Continued)

Figure 4.1.0.0-13 shows the distribution of costs by categorv for the first
operational unit (C cost). The costs of the MLILV stages as ratioed to those of the
AMLLYV stages will be 86.5 Jercent, 77.8 percent. and 87.2 percent for the
single-stage-to-orbit (main stage). three module injection stage. and fuil
complement of strap-on stages, respectively. As was observed for the costs for
Phase B, the facility, tooling and equipment will be essentially the same
regardless of size. The material costs will be relatively higher for the AMLLYV
single-stage-to-orbit vehicles and for the AMLLYV full complement of strap-on
stages. For the single-stage-to-orbit vehicle, this will be a direct effect of the
size increase. For the strap-on stages, it will be principally due to the twelve
SRM's for the AMLLV versus the 8 SRM's for the MLLV as well as the increased
propellant loading for the AMLLV SRM's of approximately 1.000, 000 pounds
each. The material costs for the three module injection stage will not be
significantly affected by size. The costs for manpower will represent by far

the majority of the liquid stage production and launch costs. Manpower costs
w1ll be a smaller percentage of SRM stage costs because of the high percentage
of purchased propellant materials and stage components. The differences in
costs for manpower between each of the ML LV and AMLLYV stages will be
principally due to the manufacturing and operstions test and quality and reliability
assurance. The management and administration and vehicle engineering manpower
will be essentiallv the same regardless of vehicle size.

Figure 4.1.0.0-14 and 15 illustrate the AMLLV and MLLV main stage production
and launch cost distributions compared to the Saturn V cost distributions. Figure
4.1.0.0-14 shows that the main stage manufacturing cost distributions by cost
categories of the AMLLYV and the MLLV will be similarly comparable to ihose

of the S-IC stage of the Saturn V.

As shown in Ffigure 4.1.0.0-15, the costs distributions by cost elements will be
geuerally comparable except for the engine cost. For the MLLV and AMLLYV, the
¢ngine costs will be a significantly larger percentage of vehicle costs than will the
engine costs for ‘he Saturn V. This can be atiributed principally to the number
of engines involved. For the MLLV and the AMLLYV twenty-four engines will be

used per main stage whereas, for the two stage Saturn V a total of ten engines
are utilized.
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LEARNING CURVE EFFECTS ON RECURRING COSTS FOR
PRODUCTION AND LLAUNCH

The preceding data show only recurring costs for the first flight stages.

To evaluate overall program costs, (as required for cost effectiveness analyses of
program, cenfiguration and technology alternatives) it is necessary that recurring
cost be computed for varying production quantities of the individual stages. To
accomplish these computations, learning curve effects on the cost of the various
stages and stage elements must be applicd. For the purpose of applying the
learning curve data, the first stage produced for flight (the first R&D flight test)
was considered as the number one unit,

The first unit costs and learning curve values shown on Tabhle 4, 2, 0. 0-1 were defined
for the various stage and stage elements. (See Book C of Volumes IV or V.

As shown in Table 4. 2, 0, 0-1, two learning curve rates were utilized in determining
the cost of the variakle cost AMLLV/MLLV components. These learning rates were:
1) 917 for the main stage structure, injection stage engine module, injection stage fuel
module, and delta cost for the heavy weight alternate forward skirt and 2) 957% for

the muin stage engine, injection stage engine and solid propellant motors.

For reference, improvement curve (learning rate) tables are provided in Tables

4¢ 2,0, 0-11 through 4.2, 0. 0-V. Tables 4.2, 0. 0-II and 4. 2. 0. 0-III show the unit
progressive curves for the 91' and 959 learning curves, respectively, Tables
4.2, 0. 0-1V and 4, 2. 0. 0-V show the cumulative progressive curves for 91§ and 95§
learring curves, respectively. An application of cach type of these curves are
shown below.

Unit Progressive Curve Application - The first unit cost of the AMLLV main stage
learning curve sensitive elements (exclusive of engines) are 118 million dollars.

To determine the costs of these elements for the sixth unit, the 919 unit progressive
curve tables are used. The first unit costs of 118 million dollars are multiplied

by the factor . 78365300. This product is equal to 92. 47 million dollars. If the
costs of the sixth unit are known, i.e., 92,47 million dollars, the costs of the first
wnit may be obtained by dividing the sixth unit factor from the unit progressive curve
table, i.e., 92.47 divided by . 78365300 equals 118 million dollars.

Cumulative Progressive Curve Application - If it is desired to obtain the cumulative
costs of the first six units, the cumulative progressive tables must be utilized.

For example: the first unit costs of the AMLLV SRM stage learning curve sensitive
elements are 13. 05 million dollars, The SRM stage learning curve sensitive clements
costs are on a 95% learning curve. If it is desired to determine the cumulative costs
of these elements for the first six units, the first unit costs of 13. 05 million dollars
are multiplied by the cumulative progressive table factor for the sixth unit, 5. 537962,

The product is equal to 72, 27 million dollars. If the total costs of the six units are ’
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4,2 (Continued)

known, i.e., 72.27 million dollars, that number divided by the above factor (5. 537962)
will give the first unit costs of 13. 05 million dollars.

To aid in application of the learninz curve effects to the cost analyses, the MLLV data
was tabulated as shown in Tables 4.2. 0. 0-VI through 4.2, 9, 0-XII. Similar data for

the AMLLV is shown in Tables 4, 2. 0, 0-XIII through 4. 2. 0. 0-XVIII. (NOTE: These
cost data apply only toa production and launch rate of two per year.)

Examples showing the use of these tables are provided in the following Section 4.3.
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TABLE 4.2.0.0-II 91% UNIT PROGRESSIVE CURVE TABLE
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TABLE 4.2.0.0-IV  91% CUMULATIVE PROGRESSIVE CURVE TABLE
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1.3 METHODS FOR DETERMINING UNIT COSTS AND FOR COMPILING
OVERALL PROGRAM COSTS

This section presents examples showing the use of the learning curve tables,
provided in Section 4.2, to determine: (1) the operational cost of a tenth AMLLV
representative vehicle configuration and (2) the overall program costs for a
sample program consisting of a mix of AMLLV configurations, The overall
program costs determined for the latter example include not only the operational
costs, but the non-recurring costs also.

The cost of producing and launching a 10th unit AMLLYV vehicle consisting of
(1) a main stage with multichamber/plug engines, (2) one injection stage engine
module, and (3) twelve strap-on stages can be determined as follows:

10th Unit Description Unit Price Ref, Table
Main Stage
Single Stage Vehicle (No. 10) $ 86.0M 4,2, 0. 0-XIII
Multichamber/ Plug Engines
No.'s 217-240 (Block cf 24) 56. OM 4.2, 9. 0-XIII
¥ixed Cost 130, OM 4.2, 0, 0-XII
$271.0M

Injection Stage Engine Module
Engine Module (No. 10) $ 14.9M 4,2,0,0-XV
Tixed Cost 5. SM 4,2.0,0-XV

High Pressure Engines
(No.'s 19 and 20) 3.2M 4,2,0,0-XVII

Sub-Total $ 23.9M
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(Continued)

10th Unit Description Unit Price
Strap-On Stage(s)
SRM Stage Cost (No.'s 109-120) $110. 3M
Alternate Fwd., Skt, (No. 10) 3. 4M
rixed Cost 7. 9M
Sub-Total
TOTAL COST

Ref. Table

4,2, 0. 0-XVIII
4,2,0,0-XVIIL
4.2.0, 0-XVII

$121.6M

$416,56M

Use of the learning curve tables to determine overall program costs is illustrated
considering a twelve vehicle AMLLV program consisting of the following:

1
i
1
v
v
VI

""Get Ready' Phase

Development Test Phase (exclusive of R&D flight tests)
Two R&D flight vehicles (Max. payload config) follcwed by

six single-stage-to-orbit vehicles followed by *

One maximum payload AMLLV vehicle followed by:
Three vehicles consisting of a main stage with four SRM's.

Cumulative
Cost Ref. Table

"Get Ready. A costs
Main Stage $1325.2M 4.0.0.0-1
Injection Stage

Engine Module 248.1M 4 0.0.0-1
Two Injection Stage

Fuel Modules 1.4M 4 0.0.0-1
SRM Fixed 311.8M 4.0,0.0-I
SRM Variable ___88.5M 4.0.0.0-1

Total A Costs

$1,975.0M




(Continued)

Cumulative
Cost Ref. Table

1. Development Test, B Costs
(Exclusive of Two R&D
Flight Tests)
Main Stage $1,210.5M 4.0 0 0-11

Injection Stage
Engine Module 337.TM 4.0.0.0-T1

Two Injection Stage
Fuel Modules 73.9M 4.0.0.0-11

SRM Stage __214.1M 4.0.0.0-11
Total B Costs $1.836.2M
Oi. Two R&D Flight Vehicles
Main Stage
Single Stage Vehicle (No,'s 1-2)$ 225.0M 4,2, 0, 0-XII1

Multichamber/ Plug Engines
(No.'s 1-48) 135, 0M 4.2, 0, 0-XIl

Fixed Cost 477, OM 4,2, 0, 0-XII
Suh-Total $837. 0M
Injection Stage - Engine Modules
Engine Modules (No,'s 1=2) $39. 0OM 4,2, 0, 0-XV

Fixed Cost 34. 8M 4.2.0.0-XV

125K Thrust Engine
(No,'s 1-2 & 7-8) 7. 1M 4,2, 0,0-XVII

Sub-Total $80, 9IM




4.3 (Continued)

Cumulative
Two R&D Flight Vehicles Cost Ref. Table
Injection Stage - Fuel Module
= Fuel Module (No,'s 1-4) 34, 6M 4,2, G, 0-XVI
Fixed Cost 18, 6M 4,2, 0, 0-XVI
125K Thrust Engine
(No.'s 3-6 & 9-12) 13, ™M 4,2,0, 0-XVII
Sub-Total $66. 9M
5_ SRM Strap-On Stage
SRM Stage (No, 's 1-24) $265.1M 4,2, 0, 0-XVII
Alt, Fwd. Skt. (No.'s 1=~2) 8. 8M 4.2, 0. 0-XVIII
z SRM Fixed Cost 54, 8M 4.2.0, 0-XVIO
- Sub-Total $328, TM
}" TOTAL $1, 313, 5M
}w Cumulative
’ IV, Six Single Stage Vehicles Cost Ref. Table
; . Main Stage
Single Stage Vehicle (No,'s 3-8) $563, OM 4,2, 0, 0-XIII
Multichamber/ Plug
(No.'s 49-192) 357. OM 4,2, 0, 0-XIII
Fixed Cost 780. 0OM 4.2,0.0-XI11

TOTAL $1, 700.0M




4.3 (Continued)

Cumulative
V. One Maximum Payload Vehicle Cost Ref. Table
Main Stage
Single Stage Vehicle (No. 9) $ 87.0M 4,2, 0. 0-XIII
Multichamber/ Plug
(No.'s 193-216) 57. 0OM 4,2, 0, 0-XIII
- Fixed Cost 130. 0OM 4,2, 0, 0-XIII -
Sub-Total $274, OM
Injection Stage = Engine Module *
Engine Module (No. 3) $ 17.5M 4.2, 0, 0-XV -
Fixed Cost 5, 8M 4,2, 0, 0-XV
High Pressure Engines
(No.'s 13~14) 3.3M _ 4,2, 0, 0-XVII
Sub-Total $ 26,.6M

Injection Stage - Fuel Modules =~ (Two)
Fuel Module (No,'s 5-6) $15.2M 4.2,0,0-XVI
Fixed Cost 6. 6M 4,2,0.0-XVI

High Pressure Engines
(No.'s 15-18) 6. 3M 4,2, 0. 0-XVII

Sub-Total $28.1M

SRM Strap-On Stage

SRM Stage (No,'s 25-36) $121.6M 4.2, 0, 0-XVII
Alt, Fwd. Skt. (No. 3) 4. 0M 4.2,0, 0-XVII
SRM l'ixed Cost 7. 9M 4,2,0.9-XVIIl
Sub-Total $133. 5M
TOTAL $462,2M
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4.3 (Continued}

VI, Three Vehicles Consisting of Cumulative
a Main Stage with Four SRM's Cost Ref, Table
Main Stage

Single Stage Vehicle

(No.'s 10~ 12) $255, 0OM 4,2, 0, 0-XII1

Multichamber/ Plug

Engines (No.'s 217=-288) 167, OM 1.2, 0, 0-XIII

Fixed Cost 390. OM 4,2, 0, 0-X1I
Sub-Total $812. 0OM

SRM Strap-On Stage

SRM Stage (No,'s 37-48) $118. TM 4,2.0, 0-XVIII
Alt. Fwd. Skt. (No.'s 4=6) 11.2M 4.2.0, 0-XVIII
Fixed Cost _23.7TM 4,2,0, 0-XVIII
: Sub-Total $153. 6M
TOTAL $965. 6M

Summary Total Program

L "Get Ready", A Costs $1,975.0M
1. Development Test, B Costs 1,836,2M
III. R&D Flight Vehicles 1,313.5M
IV. Single Stage Vehicle 1,700, OM
V. Full Size Vehicle 462,2M
V1. Single Stage W/Four SRM's Each 956, 5SM
GRAND TOTAL $8,234.4M

The above representative examples used the multichamber/plug propulsion system

on the main stage. The same type of cost data can be developed for vehicles with

the toroidal/aerospike propulsion system on the main stage by using the toroidal/
aerospike data shown in Table 4. 2.0, 0-XIV in lieu of the multichamber/plug propulsion
data. The MLLYV data, contained in Tables 4.2, 0, 0-VI through 4, 2, 0. 0-XII, may
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4.3 (Continued)

he used to develop vehicle cost data and/or vehicle program costs in the same manner
as shown above for the AMLLYV.

Similar calculations can be performed to determine the costs of larger or smaller

size programs for both the AMLLV and the MLLV vehicle configurations as discussed
in the following Section 5.1.
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2.0 COST EFFECTIVENESS OF PROGRAM AND CONFIGURATION OPTIONS

This scction of Volume VI show methods for application of the "modularized"
cost data shown in Volumes IV and V (and summarized in the preceding Section
1, 0 of this Volume) to evaluate:

The overall program costs for specific programs,
The effects of program size on overall program costs and cost effectiveness,

The relative cost effectiveness of the AMLLYV and MLL\ sizes as applied to
specific program requirements.

4. The cost effectiveness of various AMLLV and MLLV configuration options.

As the number of possible combinations between program and configuration options
is significantly large, this section does not attempt to evaluate all of the alternatives.
Representative program and configuration trades are presented to demonstrate

how such trades can be conductcd and how the required input data can be found

and applied. These trades also indicate significant trends and the major influ-
eneinz fuciors causing these trends.

In all of the cost data presented and discussed, the costs for development
production, checkout and launch of the payload are omitted. Similarly, no costs
are shown for payload or vehicle operations, such as down range tracking and
communications, after vehicle liftoff from the launch pad.

5.1 COST EFFECTIVENESS OF STAGE AND PROGRAM OPTIONS

To show the application of thz ""modularized" cost data to the evaluation of the
overall program cost and cost effectiveness, two different specific program
tvpes were defined and costed for both of the vehicle families (the MLLYV and the
AMLLYV families), i.e.;

a. An 'unbiased'" program - For an unbiased program, the payload size and
packaging is assumed to be flexible so it can be adapted to any of the
possible vehicle configurations. (Payload size and packaging requirements
do not bias the choice of the launch vehicle.) With an unbiased program the
manufacturing facilities, test facilities, and the launch complex are sized
for the specific vehicle configuration utilized to deliver the payload to orbit,




5.l (Continued)

b. A "biased" program - For a bizsed program, any or all of the pavload sizes
are fixed and, therefore, bias the choice of the launch vehicle. For a biasod
program, the manufacturing facilities, test facilities and launch complex,
therefore, are sized by the maximum size vehicle configuration necessary
to deliver the largest specified payload package to orbit.

The resulting data (as discussed and shown below) indicate that th2 cost effective-
ness choices of configurations for a specific program are not onlv dependent on the
total quantity of payload to be launched, but on the bias created by specific fixed
payload sizes.

NOTE: For thes» analys~s, a constant production and launch rate of two per y=ar
was assumed. Thzr=fors, program duration will vary inversely with v~hicle

size.
a. 1.1 MLLV Unbiased Program Cost Summary

To evaluate the most cost effective combination of MLLV stages for various required
total quantities of deliv-red payload, the total program costs (including all non-recurring
costs) for delivering betwzen thre~ million and zighteen miilion pounds of payload to a
100 NM orbit were determined. The plot of cumulative payload versus total program
costs for various MLLV configurations is shown in Figure 5.1,1.0-1.

Each of the soven lines shown on the Figure 5.1.1.0-1 represents one specific vehicle
configuration delivering the payload to orbit at a launch rate of two launches per year.
The costs were developed based on providing manufacturing, test, launch and other
supporting facilities for this manufacturing and launch rate. The specific points shown
on each of the lines indicate specific payload increments that can be obtained with each
of these configurations.

As shown, seven launches of the MLLV single stage to orbit vehicle are required

to deliver three million pounds to a 100 NM orbit. With the same vehicle configuration
39 launches are required to deliver eighteen million pounds to orbit. Two launches
of the vehicle configuration consisting of a main stage plus eight SRM stages and

a three module injection stage are required to deliver three million pounds, To
deliver eighteen million pounds, 10 launches of this larger configuration are requi vod
The figure shows that the most costly ways to deliver the payload to orbit will be with
the single stage to orbit vehicle configuration or the vehicle configuration consisting
of 2 main stage plus a single module injection stage. The addition of an injection
stage, however, will be a more cost effective option than the use of a single stage

to orbit vehicle alone for programs requiring more than nine million pounds.
delivered to orbit. Configurations employing the SRM strap-on stages will result
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TARBLE 6. 1.1, 0-1

ML LV UNBIASED PROGRAM COSTS
NO RIAS IN PROGRAM ELEMENTS

SINGLE
STAGE
VEHICLE

MAIN
STAGE
+ INJ.
STAGE

VEHICLE

(DOLLARS IN THOUSANDS)

MAIN
STAGE
+ 2 SRM's
VEHICLE

MAIN
STAGFE
+ 4 SRM's
VEHIC LE

MAIN
STAGE
+ 6 SRM's
VEHRICLE

MAIN

STAGE
+ R 8RM's
VEHICLE

MAIN
STAGE
+ (AMYINT,
+ 8 SRM's
VEHICLE

"A" CATEGORY
MAIN STAGE
INJECTION STAGE
SOLIDS

$1,104, 636
0

0

$1,104,636
197,740

0

$1, 104, 636
0
254, 051

$1,104, 636
0
278, 050

$1.104, 636
0

303, 813

$1, 104, 636
0
328, 441

=

$1, 104, 636
194, 100

328, 441

“A't TOTAL

$1,104, 636

$1, 302, 376

$1, 358, 687

$1, 382, 586

$1, 408, 449

$1, 433, 077

$1, 631, 527

"B CATEGORY
MODE L TESTS
SYSTEMS TEST
SDF
MFG, DEV
ENGINE
STRUCT. DEV, & TEST
DTV
"F" & MOCK-UP
R&D FLIGHTS

500
120, 000
73,200
9,923
325, 523
66, 420
53,104
290, 712
731, 826

600

140, 000
80,415
11, 624

484, 994

77, 626
65,104
316, 117
802, 331

1,000
120, 000
77,715
10, 041
442, 639
75, 049
71,612

320, 931
819,126

1,000
120, 000
7,115
10, 041
442,439
5, 049
1,612
320, 931
855, 626

1, 000

120, 000
77,715
10, 041

442,639

75, 049

71,612
320, 931
892, 726

120, 000
71, 775
10, 041
442, 639
75, 049
71,612
320, 931
928,126

1, 000 |

1, 000
140, 000
89, 566
11,742
602,110
96, 845
97, 874
373,162
1,048, 811

"B TOTAL

$1,671, 308

$1, 975, 411

$1,938,173

$1,975,673

$2, 011,773

$2, 047,173

$2, 461,130

“C" CATEGORY
MAIN STAGE
INJECTION STAGE
SOLIDS

1ST OPERATIONAL VEHICLE
(THIRD FLIGHT UNIT)

$ 251,300
0
0

$ 251,300

$

0

$ 212,700

251, 300
21, 400

$251, 300
0
28, 000

$279, 300

$251, 300
0
45,100

$£296, 400

$251, 300
0
61,800

$313,100

$251, 300
0
77, 800

$329, 100

$251, 300
42,600
77, 800

$371,700

A+ B
C
A+B+C

$2, 775, 944
251, 300
$3, 027,244

$3,281, 787
272, 700
$3, 554, 487

$ 3,296, 860
279, 300
$3, 576,160

$3, 358, 359
296, 100
$3, 654, 759

$3, 420,222
313,100
$3, 733, 322

$3, 480,250

329, 100
$3, 809, 350

$4, 092, 657,
371,700
$4,464, 307

PAYLOADS - VEHICLES WITH:

MULTICHAMBER/ PLUG WITH

SINGLE POSITION NOZZLE
ON MAIN STAGE

471, 649

553, 593

824, 478

1,159, 489

1,458,179

1,756, 869

NUMBER OF LAUNCHES OF

VEHICLES WITH MULTICHAMBER/
PLUG SINGLE POSITION NOZZLE
ON MAIN STAGE REQUIRED FOR
A PROGRAM OF :

3 MILLION
6 MILLION
12 MILLION

18 MILLION v
LBS. TO 100 N, M, EARTH ORBIT




TABLE 5.1.1.0-II MLLV UNBIASED PROGRAM COST SUMMARY

VEHICLE
ESCRIPTION
PAYLOAD/LAUNCH

Single Stage
(471,649 lbs)

Main Stage

Plus a Single Module
Injection Stage

(553, 593 1bs)

Main Stage
Plus (2) SRM
Stages

(824, 478 1bs)

Main Stage
Plus (4) SRM
Stages

(1,159, 489 lbs)

Main Stage
Plus (6) SRM
Stages
(1,458,179 Ibs)

Main Stage
Plus (8) SRM
Stages

(1, 756, 869 1bs)

Main Stage

Plus a Three Module
Injection Stage

Plus (8) SRM

Stages

(1, 851, 441 1bs)

NUMBER OF

LAUNCHES

2+ 7
2+ 13
2+ 20
2+ 39

2+ 6

2

TOTAL
PAYLOAD

3,301, 543
6,131, 437
12,262, 874
18,394, 311

3,321, 558

18,268, 562

3,297, 912

18,138,516

3,478,467

18, 551, 824

4, 374, 537

18, 956, 327

3, 513, 738

19, 325, 559

3,702, 882
7,405, 762
12, 960, 087
18, 514, 410

*(2) R&D Flights - Do not contribute to total payload

PROGRAMNM COST
($ IN MILLIONS)

4,474, 3
5, 867, 2
8, 863.2

11, 665. &

4, 865, 9

11,459.9

4,389,7

8, 992, 4

4,233,9




5.1.1  (Continued)

in a lesser number of launches and a lower program costs, (Assuming that the
same launch rate can be maintained.) The lowest cost programs (over the payload
range investigated) vwill utilize a vehicle consisting of 2 main stage plus eight
strap-on SRM stages. A review of the cost data showed that the savings in
recurring cost accrued for a single launch of such a vehicle will amortize the higher
recurring cost required for its implementation. The use of the injection stage

is not as cost effective as the use of strap-on SRM stages.

Table 5.1.1.0-1 tabulates the data for the seven vehicles used in the unbiased
MLLYV program cost analysis. Get ready costs, development test costs, and
first unit vehicle costs are shown. The payloads for each configuration are
identified and the associated number of launches necessary to deliver various
quantities of payload are shown,

Table 5.1.1.0-II shows a tabulation of the input data used to prepare Figure
5.1.1.0-1, Included in this table are the total program costs, total payload, and
the number of launches necessary to place three million, six million, twelve
million, and eighteen million pounds of payload into 100 NM orbit, Shown under
the description of each of the vehicles in parenthesis are the payload capability
associated with each of the vehicles.

5.1.2 MLLV Biased Program Cost Summary

In the unbiased program option discussed above, costs were determined for vzhicles
in which the manufacturing, test and launch facilities were specifically sized for a
specific vehicle configuration, All of the payloads in the program were

delivered by the same configuration. The representative MLLV biased

program, discussed in this section, includes the requirement for placing

one 1. 85 million pound payload package in orbit with a single launch plus adaditional
optional size payload packages. This requires one launch of 2 maximum payload
vehicle configuration (main stage plus eight SRM stages plus a three module
injection stage) coupled with launch of other optional vehicle configurations to
deliver the remainder of the payload in the program. With this launch vehicle

bias included, the total program costs for delivering between three and eighteen
million pounds to a 100 NM orbit were determined. Figure G.1.2.0-1 illustrates
the total program costs versus the cumulative payload delivered to a2 100 NM

orbit for various MLLV configuration launch options.

As shown in Figure 5,1.2. 0-1 the most cost effective option is tnat which concists

of one launch of the maximum payload vehicle coupled with the remainder of launches
being conducted with vehicles consisting of a main stage plus eight SRM stages.

This option is only slightly more cost effective than the option with continuous

use of the maximum payload vehicle configuration, The other options will result in
considerably more expensive programs, As would be expected, from the previous
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TABLE 5.1.2.0-II MLLV BIASED PROGRAM SUMMARY

VEHICLE
DESCRIPTION
PAYLOAD/LAUNCH

Single Stage
(471,649 lbs)

Main Stage

Plus a Single Module
Injection Stage

(533, 593 1bs)

Main Stage
Plus (4) SRM
Stages

(1,159, 489 1bs)

Main Stage
Plus (8) SRM
Stages

(1,756, 869 lbs)

Main Stage Plus

(3) Module Injection
Stage Plus (8)

SRM Stages

(1,851, 441)

NUMBER OF

LAUNCHES

*  ckk
2+1+3

2+1+ 35

2+1+3

2+ 1+ 30

2+1+1

2+1+14

2+1+1

2+1+10

2+ 2
2+ 4
2+ 7
2+10

TOTAL
PAYLOAD
(LBS)
3,266, 388
18,359,156

3, 452, 220

18,459,231

3, 010, 930

18, 084, 287

3,608, 310

19,420,131

3,702, 882
7,405, 762
12, 960, 087
18, 514, 410

*(2) R&D flights - Do not contribute to total payload

**One payload of the maximum configuration

PROGRAM COST
(3 IN MILLIONS)

5,196, 4
12, 445.

5,257,

11,886, 1

4,752, 17

8, 332, 9

4,786, 1




(Continued)

vnbiased nrogram discussion, a single launch of the maximum payvload vehicle
configuration coupled with the remainder of the launches being conducted with
single-stage-to-orbit vehicle configurations is the most expensive program option.
The continued use of the injection stage after the launch of the maximum payload
vehiele does not appear to be a cost effective option.

Table 5. 1.2.0-1 lists the input MLLV biased program costs including the '"A" get
ready costs, the '"B'" development test costs, and the "C" first unit costs. Since

the biased program includes one launch of the maximum payload vehicle contiguration,
the "A'" and the '"B" program costs are constant and are the costs for the maximum
pavload vehicle regardless of what other vehicle configuration options are utilized
for the remainder of the launch program. Also shown in this table are the payload
capability of the vehicles. It was assumed for all of the vehicle configurations that
the main stage would use the multichamber/plug propulsion system with the single
position nozzle. The number of launches shown are those launches of the alternative
vehicles which must be launched in addition to the maximum vehicle to deliver the
payload weights indicated. To obtain the total number of launches in a specific
program one maximum payload capability launch plus two R&D flights of the
maximum payload vehicle must be added to the number shown,

Table 5. 1. 2. 0-1I tabulates the program costs for the costs shown graphically in
{'igure 5. 1.2, 0-1,

AMLLYV Unbiased Program Cost Summary

To evaluate the most cost effective combination of AMLLYV stages for various requirced
total quantities of delivered payload, the total program costs for delivering between
six million and thirty-six million pounds of payload to a 100 NM orbit were
determined. The plot of cumulative payload versus total program costs for

various AMLLV configurations is shown in Figure 5.1,3.0-1.

As was observed with the MLLV unbiased program, the most cost effective vehicle
(least program cost to put up total payload) is the configuration consisting of the
maiii stage plus the maximum number of strap=-on solid motor stages. The

most expensive vehicle programs are those which use either the single stage

to orbit vehicle or the main stage plus a single injection stage vehicle, The use

of the injection stage does not become cost effective (when compared to the

single stage to orbit vehicle) uatil approximately 28 million pounds are placed

into orbit, Then it becomes slightly more effective than delivering the same
payload with the single stage to orbit vehicle,
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TABLE 5.1.3.0-1 AMLLV UNBIASED PROGRAM COSTS (DOLLARS IN THOUSANDS)
NO BIAS IN PROGRAM ELENMENTS

MAIN

STAGE ¢+ A
MAIN THREE

STAGE + MODULE
A SINGLE [ MAIN MAIN AMAIN MAIN MAIN MAIN NI
MODULE | STAGE + | STAGE + | STAGE + | STAGE + | STAGE + | STAGE « } ¢pa(p
SINGLE INJ 2 SRM t SRM 5 NRM % SRM 10 SRM 12 SRM 12 SRM
STAGE STAGE STAGE STAGE STAGE STAGE STAGE STAGE STAGE
VEHICLE | VERICLF | VEHWICLE | VEMICLE |VEHICLE | VEHICLE | VEMICLE | VEHICLE | VEHICLE

‘.

CATCAPEGORY
MATN STAGE 1,325,204] 1,325, 200) 1,325, 204] 1,325,204 ] 1,320, 2040] 1,825, 204) 1,825, 214 1,325, 214 | 1, 825,20
INTECTION STAGE 0 245,100 0 0 0 0 0 0 249, 520
SOLIDS 0 0 273,941 299,449 321,50 Aty 050 475,157 100, 3321 00, g

“ATTOTAL Laoh,214| 1,573,314 1,699, 165] 1,624,863] 1,619,772 1,674,909 1,700,370} 1,723,546 1, 975, 0ch

B CATEGORY
MODEL TESTS 600 600 1,000 1,000 1,000 1,000 1,000 1,000 1,000
SYSTEMS TEST 150,000 175,000 150, 000 150,000 150, 000 150, 000 150, 000 150,000 175,000
Shy 0,520 AR, 457 85,553 85,553 83,653 H5, 553 85,553 85,553 98,524
MEG, DEV, 9,923 11,624 10, 149 10,049 10, 044 10,049 10,049 10,049 11,750
FNGINES (AND/OR PFRT) 192,995 733,734 630,763 630,763 630, 76 630,763] 630,763 630,763{  §71,506
STRUCT, DEV, & TEST %6,067 101,090 98, 254 98, 254 9R, 254 98,254 94, 254 9R, 254 129,26 |
nTV 66,057 81,795 90, 161 90, 161 90, 161 90, 161 90,161 90,161 125,511

TET N NOCK-UP 324, 326 455,924 358,862  358,H62 A58, RB2 5%, 862 358, 862 358,862 123,736
RAD PLIGHTS R36, 735 918, 141| 949,635  995,1185] 1,039, 055( 1,081,835 1,123,935] 1,165,435 1,313,449

TRUTOTAL 2,047,223 2,460, 369] 2,374,272] 2,419, 771] 2,404, 677] 2,506,477 2, 548, 577} 2,590, 077 3,019,725

v THEGORY
VAN STAGE 293, 000 293, 000 293, 000} 295, 000 293, 0007 293, 000 291, 000 293,000{ 293,000
INJECTION STAGFE 0 26, 800 0 0 0 0 v} 0 54,700
SOLIDS 0 0 38, 900 59, 800 79, 800 99, 500 118, 600 137,500} 137,500

ISsT OPERA TIONAL VEHICLE ) . o .

(THIRD ¥LIGHT UNTT) 293,000 319,800 331, 900 352, 800 372, 8000  392,500]  411,6001 430,500 185,200

NON-RECTU RRING 3,372,437 4,039, 63| 3,973, 432 4,044, 440] 4,113, 449] 4,181,386 4, 248,948) 4,315,623} 5,124,789
TAT L BT
RECURRING

" (ABOVE) 293, 600 319, 800 331, 900 352, 800 372,800 392, 500 411, 600 430,500 485,200

CAT VRO 3, 665, 437) 1, 359, 483| 4,705,332 4,397,240( 4,486,249] 4,573,886] 4,660,548} 4,746,123} 5,609, 959

PAY LOAD
VEHICLE WITH MULTICHAMBER/ | 1,028, 887| 1, 17%, 356 1,310,000
PLUG ON MAIN STAGF.
VEHICLE WITH 2000 PSIA

TOROIDA L AEROSPIKE

1,770,000( 2,230,0001 2,780,000] 3,1R80,000f 3,527,290{ 3,737,738

980, 652

NUAMBER OF LAUNCIES OF A VEHICLE
WIrH A MULTICHAMBE R/ FLUG SINGLE
POSITION NOZZLE ON THE MAIN
STAGE REQUIRED FOR A
PROGRAM OF L

6A1

12M

Z4M

36N

RS TO FARTH ORBIT

e WD UBS GH) GEE YEN Sy ey Y




TABLE 5.1.3.0-I AMLLV UNBIASED PROGRAM SUMMARY

VEHICLE
DESCRIPTION
PAYLOAD/LAUNCH

Single Stage
(1,028,887)

Main Stage

Plus a Single Module
Injection Stage
(1,178, 356)

Main Stage
Plus (2) SRM
Stages
(1,310, 000)

Main Stage
Plus (4) SRM
Stages

(1, 770, 000)

Main Stage
Plus (6) SRM
Stages
2,230, 000)

Main Stage
Plus (8) SRM
Stages

(2, 780, 000)

Main Stage
Plus (12) SRM
Stages

(3, 527, 290)

Main Stage Plus a
Three module Injection
Stage Plus (12)

NUMBER OF
LAUNCHES
*

2 +6

2+ 35

SRM Stages (3, 710, 000) 2 + 10

TOTAL
PAYLOAD

6,173, 322
36, 011, 045

7,070,136

36, 529, 036

6, 550, 000

36, 680, 000

7,080, 000

37,1170, 000

6,690, 000

37,910, 000

8, 340, 000

36,140, 000

7, 054, 580

38, 800, 190

7,475, 476

37, 377, 380

*(2) R&D flights - Do not contribute to total payload

PROGRAM COST
(8 IN MILLIONS)

5,072,7
12,631, 8

5,892,2

12,998. 6

5, 566, 6

12, 340, 2

5,407. 6

10,830,4

5,201, 3

9,922, 2

5,327.1

8, 916. 9

5,159, 6

8,750.6

6,077, 8

9,667, 7




70103 (Continued)

Fable 5. 1. 3. 0-1 presents the AMLLV unbiased program costs, Shown on t+is 1ohle

1o nine vehicle configurations and the costs associated with the get ready, development
est and first unit costs. The payload capabilities of cach vehicle are shown, the

nuin stage containg a multichamber/plug propulsion system with a singh position noazle,
The total number of launches required for the range of program sizes is also st owi,

Table 5. 1. 3. 0-11 shows the program costs for the six million pound pay load proguin,
nd for the 36 million pound payload program for the nine vehicle configurations,

T'he number of launches and the total rayload placed into orbit by each of thesc
configurations is also shown on this table. Two launches were ineluded for “he Rapy

Tight test, The payload that could be delivered by these R&D {light test vehieies
was not included in the total payload capability shown,

50104 AMLLYV Biased Program Cost Summary

The representative AMLLYV biased program, discussed in this section, includes
the requirement for placing a singular 3.7 million pound payload package

in orbit with a single launch, This requires one launch of a maximum payload
configuration vehicle configuration coupled with launch of other optional

vehicle configurations to deliver the remainder of the payload in the program,
With this launch vehicle bias included, the total program costs for delivering
between six and thirty-six million pounds to a 100 NM orbit were determined,
Figure 5.1.4.0-1 illustrates the total program costs versus the cumulative
payload delivered to a 100 NM orbit for various MLLV configuration launch
options.

As shown in Figure 5.1.4,0-1, the lowest program cost option for the AMLLV
hiased program is the use of a vehicle consisting of a main stage plus 12 strap-on
solid stages. Because of the program bias, the use of an injection stage is

always more cost effective when compared to use of a single stage to orbit vehicle.
In all instances, use of the vehicles without strap-on stages is considersbly

more expensive than use of those vehicle configurations utilizing strap-on SRM
stages. Use of injection stages with vehicles having strap-on SRM stages will
slightly increase program costs,

Table 3. 1. 1. 0-1 shows the AMLLYV biased program cost summary (with a multichamber/
plug engine system on the main stage). As the manufacturing test and launch facilities
must be sized for the maximum vehicle configuration, the get ready cost and the
development test cost are a constant (fixed) cost for any of the nine vehicle
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TADLE 5.1.4, 0-1I AMLLV BIASED PROGRAM SUMMARY

VEHICLE
DESCRIPTION NUMBER OF TOTAL PROGRAM COST
PAYLOAD/LAUNCH  LAUNCHES PAYLOAD (¢ IN MILLIONS)
x*%x %k
Single Stage 241+ 3 6, 824, 399 6, 459, 0
(1,028,878 Ibs)
241 + 32 36, 662, 122 14, 066, 0

Main Stage 2+1+2 6, 094, 450 0,229,2
Plus a Single

Injection Stage

(1,178, 356 1bs) 2+1+28 36, 731, 706 13,690,6

Main Stage 2+1+1 5,967, 738 5,965, 5
Plus (6) SRM

Stages

(2,230, 000 lhs) 2+1+15 37,187,738 10,705, 1

Main Stage 2+1+1 7,265,028 6,024, 5
Plus (12) SRM

Stages

(3, 527,290 lhs) 2+1+10 39,010,638 9,605.1

Main Stage 2+ 2 7,475,476 6,077, 8
Plus a Three Module

Injection Stage

+ (12) SRM Stages

(3, 740, 000 1bs) 37,377, 350 9, 668, 7

*One payload of the largest configuration required

*%(2) R&D flights of the largest configuration - does not contribute to
total pavload




D, 1,1 (Continucd)

configurations shown, Only the production first unit cost varies with the vehicle
configuration. Shown in this table are the payload capabilities of the vehicie
with the multichamber/plug propulsion system with the single position nozzle on
the first stage. Also shown on this chart are the number of launches required
to deliver the six million, 12 million, 24 miiliorn, and 36 million pounds of
payload to 100 NM orbit. The number of launcines required as shown are the
number of launches required of the vehicle options in addition to the two R&D

flight tests of the maximum size vehicle configuration plus one operational launch
of a maximum size vehicle,

Table 5, 1.4, 0-11 presents the payload and program cost tabulations for the five
vehicle configuration options presented in Figure 5,1.4,0~1, Note that no usecful
payload was considered from the two R&D flights,

Configuration Influence on Program Cost

This section summarizes the MLLV and AMLLV program cost data shown in

the previous sections 5.1.1,0 through 5, 1.4.0 to illustrate the effects of
configuration selection on overall program cost. Figure 5.1.3.0-1 shows the
total program cost for a representative program considering utilization of all

of the AMLLV and MLLV vehicle configurations. The representative program
shown includes development, implementation and operation of sufficient vehicles
to deliver 20,000,000 pounds to a 100 N.M. earth orbit, All non-recurring and
recurring program cost were included and there was no restriction on the sizes
of the individual payloads. This figure shows that as the paylcad capability of
the vehicle increases that the total program costs will generally decrease, For
the size program shown, the maximum payload capability MLLV vehicle, however,
is almost as cost effective as the maximum payload capability AMLLV vehicle
and is more cost effective than the majority of the AMLLV configurations, As
discussed carlier and shown on this figure, the use of the injection stage (as a
propulsion unit to achieve orbit) is generally not cost effective. Similar analyses
of other program sizes also showed that the use of the injection stage would never
be the most cost effective option. For this reason, use of the injection stage, as
a propulsive stage to achieve a 100 N,M. carth orbit, was no longer considered
and excluded from further cost trades. The injection stage will be a useful stage
for usc in orbit and for missions bevond a 100 N, M, carth orkit. The injection
stage should, therefore, be considered as part of the payioad package rather than
as part of the orbital injection vehicle,

The trends discussed above were biased by the size of the sclected operational
program relative to amortization of the non-recurring costs. Figure 5.1,5.0-2
shows the same type data for an operational program only (non-recurring cost
excluded). This figure not only confirms the trends dis~ussed above but leads to




Nv¥DOUd adSVIENQA
MO4 NOLLVH NDLINOD @T1OIHAA SISHEA LSOO INVEDOUd TVLOL 1-07¢'T7¢ HHNDL
SNOTTTIIIN NI SANA10Od - HONAVT 4dd avOT1Avd
v g z 1 0
v " 4 » " ﬁ v ! Y Y ﬂ T v 1 N W
T T 1
. {
. BTSN I + T N O A M S
D S RN SN SUDUNN AUV VS SR f-irtlxr,t W - b d i bye 3
i _ S | S L o # L e
Mrirw.x Il ~ Ilvl : nh..l.! \d‘I+ t'._ . —~ .T.ll\w\’l.l xm!i-:lixlatlpl..lll* * . et ] M
bbbl b S ATTIINY SINMS ¥+ 4 b e Lol teg =
o A v A o | I [ >
_ | I IR FR D mz ATINV . | o | | =
5 | ! A SIVYS 8 + ms ........ N S
SWYS 2T + I !.'#4 e Lmim.m_m + S F..I T\ o % - e
*4 m_zmm OT +# SW 1 -f 1 1% 4 o - b g SWHS 9+ S | . . : %
g :lmzmwfmsrmwf@émmf ms - P> | SWHS ¥+ SK+—— |- §§ @ g
| . T | : i 1
SI¢+ msm_w Z1 + L b b swuszesw >qq2<au. o Amsv Emmowwwmwwﬂh%« m
S ATV = n s+ S ATTIY T C S
,” i “ SR ; It o‘nh : d ‘.#.l{i Lﬂ _ilolnlvc.—W >
m ,. : ! N ,_, | &
S . e oo _‘ B T - ' . “.
: - ; —t
REE R : bt - Z
' : : ' ' { . i
- S M . H . m . . 1 ot
! : P _ - ! i !4#- bR 718 e
, , ('s°D ADV.LS NOLLOA NI ATINAOW ATONIS + SH | m ! =
>_ ! (SW) LIFHO OL FDV.LS ITONIS Lo 7
. AR R SR S B R R i i i I A
QVOTAVd JO dZIS W S _ | | | W M ., m “ m |
NO NOLLOM1SHY ON q! ti.l“-.-.wll-f i R = T%:T; heep b s RIS
. ! . _ ! . i . ' . A ' 1 i
| | W ! : _ Lo _ ,
LIGHO HIMVE "N 001 | oot bt e Lo : |
VoOLAvOIAvd 40 . ' 11 - |
SANNOd NOUTTIN 03 SKvHDOoud : -1 ! - Lot




N VHOOUd dASVIINO YO
A LSOO NVY

AT1D0IHAA S

—~

.
’

[ NOLL Vd (DIINOD
YOUd TVNOLLVYIJO 2-0°6°1°6
ZD—Aw:E NI SANNOd - HONOVT 3dd dVOTAVd

e

. . - n B flwr.t_.t_r, T
B i
SINUS 0T +~+

NATIINY SN .MJ].:Z/\ ‘'SIN >1H.HH£<
' H .f |L......T Lﬂ.!

W SIS I +.w

SINUS 21 + xl.-Ji
SIN >d1.:><

e .
! i

_

.;iw

E\,Em 9 + ”
mz >qq2<

SIS frf

.LIAJ.. .vl.nr;

s 8+ v;? .,.HU?..@_

1S 9+ 515;1/.., ,

T ,mmzﬁm w + SI

[USDYUUSUSEP I

o .fm.sz 5T AT
~ . 1 msEm g+ SWATINV|

TR

f_ + SN ATINV!
'S ,EMEO OL dADVLS

”, ,mq:za 5;52

S

o Lo b
d7Is dVO'l kw<&
NO NOLLOIULSIY ON

(saNNOd NOI'T'TIN €& ANV
NOITTIIN ¢ NAIMLAS ¢
LNANAUOND LITIO -
HLIUVI "IN 001

V¥ OL AVOTAVd 10
SUNNOd NOITIIN 03

_.MT.Sm

b31$

b +18

P s Rt R

.',:W- L PRIES

TAVUD0Ud L

100

SNOI'TTIE NI SUVT10d - LSOO INVHOOUd TYNOILLYHIdO




R S (Continued)

a significant conclusion, i.e.: for a given payload per launch requircment,
recurring costs will not be significantly influenced by the choice of the launch
vehicle configuration. For example, for a payload size requircment of approximately
1.3 million pounds per launch, cither the MLLV main stage plus 8 strap-on stagc
vehicle or the AMLLV main stage plus 4 strap-on stage vehicle can be used for
basically the same operational cost. Similarly, for a payload size requirement
of approximately 1.2 million pounds, an MLLV main stage plus + strap-on stages
vehiele or an AMLLYV main stage plus injection stage vehicle can be used with

no significant difference in operational program cost. To further confirm this
effect, existing cost data for two stage Saturn V vehicles and for two stage Saturn
Vv vehicles with either 4-156 inch or 4-260 inch diameter SRM strap-ons were
normalized for a production and launch rate of two per year. This data, which
are also shown in Figure 5.1.5.0-2, further indicate that for a specific payload
per launch requirement, costs will be insensitive to configuration sclection. For
example, for a payload per launch requirement of 500,000 pounds, the MLLV
single-stage-to~orbit vehicle or the Saturn V vehicle with four 156 inch SRM
strap-ons can be used without a significant difference in cost.

As discussed above, for a given fixed payload per launch requirement, operational
program costs will be insensitive to the choice of the launch vehicle configuration,
A specific amount of energy, in whatever package, will cost the same amount,
This conclusion assumes that all possible configurations will e produced and
operated within the same program philosophy, limitations and ground rules,

The data in Figure 5.1.5.0-2 further shows that for increased pavload per launch
requ:rements, program cost will decrease. In other words, there appears to be
a "quantity discount' relative to size of the payload package. This '"quantity
discount" is based on the assumption that, whatever size vehicle is used, a
production and launch rate of two vehicles per year can be maintained. The effect
of this assumption on the "quantity discount" trend is further discussed in

Section 5. 1.6,

. 1,6 Rate Influence on Unit Cost

The cost effectiveness trades discussed in the preceding sections were accomplished
assuming a production and launch rate of two vchicles per year. Prior expericnce
with the Saturn V and other programs has shown that the cost of a launch vehicle

is significantly effected by the production and launch rate. This launch rate/cost
relationship is such that it could invalidate the trends indicated. The range of

size of the vehicles considered is such that a common launch rate may not be
applicable, If payload development time is a limiting factor, a program to launch

a given weight of payload may require a minimum time for accomplishment. For
example, a program to launch 20 million pounds ot payload could require a minimum
of ten years for accomplishment (two million pounds per year). This rate




7.1,6 (Continued)

limitation on payload would impose the following vehicle production and launch
rates:

MLLYV Single-Stage-To-Orbit 4,28 launches /yr
MLLV Main Stage Plus Eight Strap-Ons 1. 14 launches /yr
AMLLYV Single-Stage-To-Orbit 1.94 launches /yr
AMLLV Main Stage Plus Twelve Strap-Ons 0.57 launches /yr

If the unit costs for launch vehicles will be a function of the production and launch
rate, a payload limitation on rate will reduce the costs of the smaller vehicles
and increase the costs of the larger vehicles, To quantitatively evaluate the rate
effect on unit cost, the following activities were accomplished:

a. A review of the rate/unit cost sensitivity of Saturn V/S-IC costs as defined
by the Chrysler National Space Booster Study, Contract NASW-1740 (1968)
and by additional Boeing in-house studies.

b. A review of the AMLLV/MLLV cost data to define the rate sensitive cost
clements.

These reviews resuited in the data shown in Figure 5.1.6.0-1 and 5.1,6,.0-2.
Figure 5.1.6.0-1 shows cumulative annual recurring program costs as a function
of iaunch rate. This data plus similar non-recurring cost data curves arec shown
on Figure 5.1.6.0-2. These latter curves show that the unit costs of the AMLLV/
MLLV vehicles will be strongly influenced by the production launch rate and show
the appropriate factors to be applied to the individual vehicle costs to account for
variations in the launch rate from the nominal of two per year,

Figure 5.1.6,0-3 shows how application of these launch rate cost bias factors
would effect the results of the program and configuration cost effectiveness

studies shown on the preceding Figure 5.1.5.0-2, This {igure proposes another
significant study conclusion, i.e.: choice of vehicle configuration for any size
payload per launch requirement will not significantly effect program costs. The
rate bias on costs, as shown on this figure, neutralizes the indicated reduced costs
for the larger payload vehicles (neutralizes the "quantity discount' effect).

Figure 5. 1.6, 0-4 shows a matrix of operational costs versus vehide size (payload
per launch) as a function of either various fixed launch rates or variable fixed

rates of payload launched per year, This data shows that the above conclusion
basically holds for any required quantity of payload per year. There are, however,
some minor cost advantages for selection of specific size vehicles for specific
payioad per year requirements, For example: for a payload per vear requirement
of 2.0 million pounds, the least expensive vehicle would be that configuration

with approximately 2 million pounds of payload capability. Choice of either larger
or smaller vehicles would tend to increase the operational program costs. Similarly,
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By (Continucd)

rograms which require larger quantities of payload per vear will have lower cosis
it thov utilize vehicles with payload capabilities of slighly in excess of 2. 0M poun =

1 E: The data shown on the aforementioned figurces, while irdicative of trencs,
should not be applied directly for quantitative comparisons, For lower
launch rates, modifications of operational procedures and philosophy
could reduce the rate impact on cost.

el PERFORMANCE/COST POTENTIAL OF ENGINE OPTIONS

in the previously completed AMLLV study (Contract NAS2-1079), two different
‘ propulsion systems were ovaluated for application to the main stage, i.c.:
‘ 1y the high pressure multichamber/plug propulsion system and 2) the 2000 psia
toroidal /acrospike propulsion system, The propulsion system alternatives
investi; ted for the MLLV main stage, in this study, were:

a. The high pressurc multichamber/plug prop ulsion system with a single
position nozzle.

h. A high pressure multichamber/plug propulsion system with a two position
t nozzle.

The 2000 psia chamber pressure toroidal /aerospike with 5 modules (each
iR producing one million pounds of thrust).

d. A 1200 psia chamber pressurce toroidal /aerospike with 28 modules (cach
producing 286,000 pounds of thrust),

c. A 1200 psia toroidal/acrospike with 8 modules (each producing one million
pounds of thrust).

The performance analyses of these various propulsion system options are

‘ presented in Volume 11, In general, the multichamber/plug propulsion systems

: will provide the highest engine performance while the toroidal /aerospike propulsion
systems will have the lowest weight. As a result of vehicle payload performance
analyses, it was determined that the 2000 psia (high pressure) toroidal/aerospike
engine will provide the best compromisc between engine performance and engine
weight, The use of either high pressure multichamber/plug or the 1200 psia

(low pressure) toroidal/aercspike propulsion systems will result in lower vchicle
payload capability.

This section reviews the performance data relative to the costs of the variois engine
svstems to assess the performance/cost potential of the engine options. Section
-.2.1 assesses the relationship to program cost of the module size of the AMLLYV
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3.2 (Continucd)

2000 psi toroidal /acrospike engine. Section 5.2.2 assesses relationship to
program cost of the module size and chamber pressure of the MLLY toroidal/
acrospike, Section 5.2.3 analyzes the relationship to program cost of the
AMLLV multichamber/plug module size.

The multichamber/plug propulsion system costs were provided to Th ys0eing
Company by the Pratt and Whitney Division of United Aircraft Corporation,

The toroidal /acrospike propulsion system costs were supplied by the Rocketdvne
Division of North Amcrican Rockwell Corporation.

5.2.1 Effccts of AMLLV Toroidal/Acrospike Engin2 Module Size on
Program Cost

The get ready, development test, and first unit costs for the tornidal /aerospike
propulsion system were provided for two different 2000 psia toroidal /acrospike
propulsion systems: 1) an cight module system with a total thrust of 16 million
pounds (two million pounds thrust per module), and 2) a sixteen module system
with a total thrust of 16,000,000 pounds (one million pounds thrust per muaule).

Figure 5.2.1.0-1 illustrates program costs relative to quantity of operational
pavload delivered to a 100 nautical mile orbit by various AMLLV configurations
employing the two different engine module sizes. The costs for the single-stage-
to-orbit vehicle indicate that use of the smaller module (onc million pound

thrust module) will result in slightly lower program costs for small quantities

of operational payload than will the use of the propulsion system witii the two
million pound thrust module. As the amount of payload to be delivered to orbit
is increased beyond approximately twelve million pounds use of the larger
module will, however, become more economical.

Two other vehicle configurations are also shown: 1) an AMLLV vehicle consisting
of a main stage plus six SRM strap-on stages and 2) an AMLLYV vehicle consisting
of 2 main stage plus 12 SRM stages. Each of these configurations were also
costed with the eight two million pound thrust module and the six‘een one million
pound thrust toroidal/aerospike propulsion system. In both instances, the costs
for the vehicles with the two million pound modules will be initially slightly
higher than those of the vehicles with the one million pound modules. The two
million pound raodule vehicles will become more cost effective as the required
total payload increases beyond 27 and 42 million pounds for the main stages plus
six SRM vehicles and the main stage plus twelve SRM vehicles, respectively.

Usc of cither the larger or smaller modules will not significantly eff~ct the
overall program cost. The costs of the two million pound module toroidal/
acrospike propulsion system for any configuration will be 68 million dolla:.
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5.2.1, (Continued)

greater than that of the one million pound module thrust toroidal/acrospike
propulsion system during the get ready and the development test phases. This
difference will be amortized by the lower production cost of the two million
pound thrust modules such that the larger modules bezome more cost effective
for the larger programs, The program cost savings attributable to use of the
iarger modules will be approximately 30 million dollars for a program consisting
of 18 launches of the AMILV single-stage-to-orbit vehicle, This saving will
represent a total program cost saving, however, of only 0,4 percent as the
overall program cost for development and launch of 18 operational vehicles

will be 7,554 million dollars,

5.2.2 Effect of MLLV Toroidal/Aerospike Engine Module Size and
Chamber Pressurc on Program Costs

The three different toroidal /aerospike engine systems investigated for the main
stage of the half size MLLV vehicle were:

a. A 2000 psia chamber pressure system with cight modules, each producing
one million pounds of thrust,

A 1200 psia chamber pressure system with eight modules, each producing
one million pounds of thrust.

A 1200 psia chamber pressure system with 28 modules, each producing
286,000 pounds of thrust,

Figure 5.2.2.0-1 shows relative total progiram cost as a function of the cumulative
amount of payload delivered to 100 NM earth orbit for three different MLLV
configurations for the three engine systems. The configurations shown are

(1) a single-stage-to-orbit vehicle, (2) a vehicle consisting of a main stage plus
four strap-on stages and (3) a vehicle consisting of a main stage plus eight strap-on
stages.

For all of the three vehicle configurations, the differences in costs attributable
to the various engine systems employed on the main stage will he only a minor
portion of the overall program costs. With the single-stage-to-orbit vehicle,
the 1200 psia engine systems will be the more cost cffective for programs with
total payload requirements of less than two to three million pounds. fleyond
this point, the 2000 psi toroidal/aerospike propulsion system will be miore cost
effeciive. While the 1200 psia propulsion system can use existing J-2 turbs
pump technology, the higher performance that can be obtained with the 2000 psi
propulsion system will soon offset the higher costs required for de velopment of
the new turbo machinery. Similar trends, which favor the 2000 psi engine
system, are shown for the configurations employing strap-on SRM stages.
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D.2.2 (Continued)

Comparcd to the 28 module 1200 psia system, tne reduced production cost
attributable to the larger module size will give the 5 module 1200 psia engine
system a cost advantage,

The single-stage-to~orbit configurations will be more cost scnsitive to the
engine options than will be configuraticns employing strap-on stages. Overall
program costs, in any case, however, will not be significantly effected. TFor
cxample, a program cost differential of 3200 million dollars between engine
options for the single-stage-to-orbit vehicle will represent a change in total
program costs of approximately 2.4 percent,

132

(3]

.3 Effects of Multichamber/Plug Module Size on Costs

o~

During the AMLLV stuly program, the multichamber/plug module size effects
on engine performance and weight were investigated. Some dcgradation in

the amount of payload delivered to orbit by the single-stage-to-orbit vehicle
w3 shown to occur as the engine module size was increased (with total stage
thrust held constant), This decrease was due 1) to the increased stage
structural weight required to react the more concentrated engine thrust loads
and 2) the sea level cffects of the required overexpanded nozzle,

it would, therefore, be advantageous from the performance standpoint to
have as many modules as possible. Cost trades were conducted, considering
the AMLLYV single-stage-to-orbit, the number of modules to optimize cost/
performance. Figure 5.2.3,0-1 shows that the overall program costs for
engine systems incorporating the larger modules generally will be slightly
less than those of engine systems with the smailer modules. While the
non-recurring costs of engines with smaller modules will be considerably
less than those of engines with larger modules, the production costs will be
less for the engines with the larger modules.,

RIS STRAP-ON STAGE CONFIGURATION PERFORMANCE COST
TRADES

In the prior AMLLV study, the payload capability of the core vehicle was
found to be significantly incrcased through the utilization of strap-on stages.
The vehicle performance with both liquid propellant strap-on stages and solid
rocket moter (SRM) strap-on stages was investigated. The strap-on stage
diameter and amount of propellant carricd in these stages as well as the
number of stages were investigated,

For the MLLV half size vehicle configuration investigated in this current
study activity, only SRM strap-on stages were investigated. Strap-on stage
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Je3 (Continucd)

diameters of 136 and 260 inches and the method of staging these SRM strap-on
stages vwere examined, This performance trades activity is reported in
Volume 11,

This section reports the results of performance/cost trades relative to size,

tvpe and staging sequence of strap--on stage propulsion svstems,

3.3.1 Liquid Propellant Strap-On Stages vs, Solid Rocket Motor (SRM)
Stages

The liquid propellant strap-on stages are an alternati ve for the solid rocket
motor (SRM) stages. For the purpose of this comparison, it was assumed that
the costs for development, test and manufacture of the liquid stage would be

the same as those for the SR)M stage., The comparison of the liquid strap-on
stage to the SRM stage was, therefore, based on relating comparable post-
manufacturing tests, procedures and operations, The liquid propellant
strap-on stages for this comparison were assumed to be 260 inches in diameter,

The SRM stage is described from development through manufacture and usage in
Volume I, paragraph :.2,.9 - SRM Development Tests, paragraph 4.2.10 -
Flight Tests, Section 5,4 - SRM Manufacturing Plan :nd Section 7,0 - Launch
Plan,

Table 5,3, 1.0-1 outlines the processing of the SRM stage and a comparable
liquid stage from the manufacturing site to the launch facility and through
liaunch, Costs for most of the operations will be similar for the two stages,
and are ot listed, Where substantial differences will exist, cither in "'get
ready' non-ecurring costs or operating and maintenance recurring costs,
these costs are noted. The prime assumption is as stated above that the costs
of the two stages, upon reaching the menufacturing facility dock site, will be
equal. ‘This includes the cost of the liquid fuel for the liquid stages. Major
differences occurring in processing after this established baseline, are noted
as delta costs.

Weights will be a factor in transporation and handling costs. The 260 inch
SR\ stage for the full size AMTLV will weigh approximately 4, 200,000 pounds,
while the dry weight of 2 comparable liquid stage will be approximately

172,000 pounds, Storage requirements at the launch site will also affect
transport ation and handling costs. The weight and safety requirements of the
SRM stages dictate that they will remain on the barge, moored in a protected
location until nceded for launch,

Recurring processing costs for the two configurations will differ very little,
ard will be generally more «r less compensating, An exception i3 the increased
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Senl (Continued)

SRM transportation costs which are attributable to tne requirement to store

the SR)M stages on the barges until 2ll the stages have been received, and the
vehicle is scheduled for launch  This will necessitate one barge for cach SRM
stage, plus one spare. (Only two liquid strap-on stage barges will be required,
as liquid stages will be off loaded immediatelv upon arrival at the launch facility,
The two barges can cach maks two round trips per month, if required.) The
SR)M barge operating and maintenance costs for each launch cyele of six moaoths
will exceed the liquid stage birge operating and maintenance costs by <95,000,

‘“he initial non-recurring costs of the 13 SR stage barges will be 320,316,000
more than the cost of the two liquid stage barges.

It will take more time and equipment to lift the heavier SRM stages, This
lifference will be partially compensated for by the fact thot the SR)M stage will
undergo only one handling sequence after barge oft-loading and will be placed
directly in the silo for mating to the main stage, The liquid strap-on stages will

first go to the receiving arca on the pad, and then will be placed in a subterrancan
storage rocm on the pad until nceeded for stacking the vehicle, While the
operating costs of handling the SRM's and the liquid stage on the launch pad will,
therefore, be approximuately the same, there will be a <10, 610,000 additional
~ost for the larger gantry required to lift and transport the SRM stages,

Propollant storag - and listribution capacities must b e increas- 1 at the Launch
facilitv, if liquil propellant <tag s are tobe use ), The eost of a Hitioaal fuel
storage barges, pumping ani Jdistribution fucilities is estimated at 317,000,000,

As =hown (considering the prime assumption), these differences will result tnon
approximate 21TV (1,37) savings in the AMLLV non-recurring get ready costs
attributable to use of the liguid strap-on stages. Similarly, the recurring costs
for the AMLLV maximum pavload vehicle would be reduced by S95K (0,02),

Dollars Available for Strap-On Stage Options

The strap-on stage options investigated during the AMLLV and MLLV vehicle
conceptual Jdesign studies were the 260 inch and the 156 inch solid propellant
rocket motor stages, and the 260 inch Liquid propellart strap-on stages.,

Costs fHr the entire SRM stage program were develoned for both the ALV and
VI LV, These costs include the costs of design, development and test, tacilities,
manufacture, transportation, and launch costs,

A summary of all costs associated with the 260" SR\ stage, from drawing board
to launch pad, appear in Figures 5.3,2.0-1 and 5,3,2.0-2 as Jdollars available
for AMLLV or MLLV strap-on stage options, These figures contain indivitdual
data for specific program sizes considering t'io maximum pavload vehicles,
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o022 (Continucd)

Fach MLLV or AMLLYV vehicle as costed has a main stage and a full compliment
of SRM strap-ons; e.g., 3 for the MLLV and 12 for the AMLLY,

The tables appearing on each figure show the total program costs (less SRM's),
the SRM strap=-on stage non-recurring costs and the SRM strap-on stage
recurring (Cg and Cy) costs. The totals of the SRM stage costs appears on the
table and on each bar on the bar charts, These SRM totals (as designated by a
triple asterisk) represents amounts available withir each program for
implementation and operation of anv alternative strap-on stage.

3.5.9 Cost Comparison of MLLV Vehicle Configuration with Strap-On
156 Inch or 260 Inch SRM Strap-On Options

During the MLLV half size vehicle conceptual design study activity as reported

in Volume II of this final report, it was concluded that the 156 inch strap-on

stage with one half the thrust level and one half the propellant weight of the 260 inch
SR\ stage would be an acceptable option for the MLLV strap-on family. Twice

the number of strap-on stages would be required for the maximum vehicle
configuration with the 156 inch SRM's as required for that with the 260 inch

SRMI stages,

In Volume III, Resources Implications, a comparison was made of the method of
transportation of the 156 inch motor segments to the launch site versus delivery
of the completed 156 inch stage. The various launch operational procedures and
sequence options for the 156 inch stage were also analyzed. The transportation
and facility requirements were identified. This data, coupled with cost data
obtained for 156 inch strap-on motors by Boeing and other contractors on previous
studies provided the input data for the cost comparison,

Table 5.3.3.0-1 shows comparablc costs for get ready and development test costs
associated witl the 260 inch and 156 inch MLLV SRM strap-on stages.

The fixed get ready costs for the 156 inch SRM stage will be approximately
345,000,000 less than those shown for the 260 inch SRM stage. The principal
cost differences will be due to:

a. Slightly reduced launch compiex facility costs. These will be the result of
lower cost handling and lifting devices required for the 156'' SRM segments,
(These segments weigh less than one half million pounds per segment
versus the approximate three and one half million pounds of the monolithic 260
inch SRM stages.)

Reduced SRM facility and tooling costs, Approximately $19,000,000 less
will I'e required for the 156 inch SRM stage. As the 260 inch SRM stage
will be delivered as a complete stage versus the 156 inck motor being
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TABLE 5.3.3.0-1 GET READY AND DEVELOPMENT TEST COSTS FOR MLLV
CONFIGURATION WITH EIGHT 260" SRM STRAP-ON STAGES
VERSUS SIXTEEN 156" SRM STRAP-ON STAGES
(DOLLARS IN THOUSANDS)
FUNCTION OR COMPONEXNT 156" SRM STAGE 260" SRM STAGE
I'ixed Get Ready Costs
GSE 3 3,100 i 3,072
Michoud Facility 7,420 8,43
Launch Complex Faciiity 151,000 142,470
SR)M Facility and Tooling
Plus Design 25,000 44, 131
Stage Structure Design
and 71 ooling 19,500 32,745
Forward Skirt 19,729 19,729
Subtotal 225,749 270,551
Quantity Sensitive - Get Ready (osts
GSE 14,000 1,690
Facility, Manufacturing and
Launch 32,000 12,170
Subtotal 46,000 37,860
Development Test Costs
Stage Structural Test 2,287 3,789
Manufacturing Development 118 118
PFRT SRM 42,900 69,321
Other 9,500 14,758
Stage Structure 21,000 33,037
Wind Tunne! and SDF 4,975 4,975
Facility Test 15,820 30,219
DTV 13,508 18,508
R&D Flights (2) 224,443 196,207
Static Load 2,880 4,810
Subtotal 342,431 375,772
TOTAL 8614! 180 2‘704'213
. 158" SRM Stage Contains 1,45 \lillion Pourds of Propellant J
. 260" SR)M Stage Contains 2,90 Million Pounds of Propellant
|
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delivered in segments, corsiderably less tooling will be required for assembly
and checkout at the SRM facility,

c. Smaller diaineters and lower weirht for the associated stage structure
design and tooling, Approximately thirteen million dollars lower cost will
result with smaller 156 inch SRM stage structures,

Other get ready costs are those items of ground support cquipmeid and facility
manufacturing and launch equipment which are sensitive to the quantity of solid
notor segments and/or motors to he fabricated and to the numbcr of SRM stages
to be launched, The GoE costs for the 156 inch SRM will be approximately the
same as the 260 inch SRM. Although there will be a considerable difference in
the weight of the items to be handled by the ground support equipment, the larger
quantities and number of subassembiies (segments) that will be required for the
156 inch SRM will make their costs comparable to the 260 inch SRA GSE costs.
There will be a decrease of approximately 812,000,000 between the 156 inch
stage and the 260 inch stage costs for the quantity sensitive elements of the
facilities for manufacturing and launch., The 156 inch motors can be manufactured
» in a simpler manufacturing facility than those required for the 260 inch motors,

. The 260 inch motors will require cast, cure and test facilities which cost between
: two to three million dollars apicce., At least four would be required to meet the

, launch rate required by the program. For the 156 inch motors, the segments

; will be cast in smaller inecrements and require less complex facilities.

A difference of approximately 233,000,000 will exist between the 156 inch SRM
stage and the 260 inch SRM stage develcpment test costs. The major differences
will be in the PFRT costs where approximately $43,000,000 more will be required
for the 260 inch SRM stage tests. The same number of SRAM's will be involved in
the test program, however, the propellant in the 156 inch motors will be half

that required for the 260 inck motors, In addition, all other structures will be
reduced in size and weight and, therefore, cost considerably less. A cost
difference of approximatel S15,000,000 will exist in the facility test vehicle costs.
The structural elements, transportation costs, and launch operation costs for

the 156 inch motors will make up the major portion of this difference. These costs
will be considerably less for the 156 inch SR stage as it goes through the facility,
handlin~ and checkout procedures than those for the 260 inch SR)M stage, All of
the other costs shown in the development test program will be approximately the
same for the two configurations (except for the R&D flights),

\ehicle programs with increasing pavload requirements were costed to determine
the break even point between the two configurations, Three different size vehicle
programs werec examined. These programs consisted of four vehicles which
placed 7,000,000 pounds of payload into 100 NM orbit, nine vehicles which put up
15,800,000 million pounds of payload, and 20 vehicles which put up 35,100,000
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5.3.3 {Continued)

million pounds of payload. With only four vehicles, the 156 inch SRM prosram
cost will be 11/ less than the program cost for 260 inch strap-ons. The cost
difference is the result of the greater 'get reauy' and development test costs for
the 260 inch SRM stages as compared to the 156 inch SRM stage. At approximately
nine vehicles or 15,800,000 pounds of payload, the lower get ready and development
test costs for the 156 inch SR will be offset by the lower production costs for

the 260 inch SRM stages. At this point, the overall cost of the 260 inch SRM
program will be slightly lower than that of the 156 inch SRM. When the program

is increased to 20 vehicles, there will be a considerable savings with the vehicle
configuration having 2€0 inch SRM strap-ons. These compavative results arc
shown in Figure 5.3,3,0~1,

5.3.4 Cost Comparison of MLLV Configuration with Eight Strap-On
260 Inch SRM's - Sequentially Staged SRM's Versus Non~Sequentially
Staged SRM's

The MLLV configuration consisting of a main stage plus cight stran-on 260 inch
SRM's, operating in a zero stage mode, will have a payvload capability to 100 N\
of 1,757,000 pounds. In Volume II, the performance advantage of sequentially
staging the 260 inch SR)M stages was presented. For the sequential staging mode,
six of the eight SRM siages would be ignited at liftoff, burned and separated after
propellant depletion. The remaining two SRM stages would be then ignited,

After their propellant depietion, they would be separated and then the main stage
ignited, The payload with the sequentially staged SRM's would be approximately
1,950,000 pounds. (This payload value is a conservative approximation, The
effects of drag losses and vehicle structural penalties induced hy the SRM stages
that are not ignited at launch must be considered in more detail analyses to better
define the vehicle performance for this mode,)

The effects of sequentially staging the SRM's on the get ready costs, development
trsts costs and first unit costs were determined. It was determined that the
following vehicle elements will be affected:

a. Instrument Unit - The instrument unit must be modified to provide the
modified ignition and separation sequence of the SRM stages.

b, Main Stage - The main stage exclusive of the forward skirt must be
structurally modified to withstand the greater payload weight and length,
The base plug will require a significant increase in the ablative insulation
since it now must withstand the solid motor cxhaust gases for 260 seconds
rather than for 130 seconds as with the non-staged configuration. The
forward skirt structure will be significantly affrcted, During operation of
the six SRM stages, six of the points at which the SRM stages are attached
to the core vehicle will react the positive loads induced by the thrust of the
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5.3.4 (Continued)

SRM stages while the remaining two SRM stage attachment points will
react the negative loads due to the non-operation of these stages and to the
drag induced by their weight. This will create unusual loads paths within
the forward skirt and will necessitate some increase in its weight.

In addition to the vehicle changes, there are several areas which should be
investigated during the get ready and development test phases. These include:

a. Wind tunnel analyses of the local aerodynamics and separation dynamics
during staging. As the SRM stages will not be separated simultaneously,
the spacings between the two remaining and the six being expended will
be more critical than when all eight SRM stages are staged simultaneously.

b. Analyses of the separation motor requirements. With ‘he tight clearance
between the SRM stages being separated and those remaining, it may be
necessary to modify the separation motors.

c. Increased structures testing of the main stage and strap-on stage forward
skirts to account for the uneven load distribution,

d. Modification to the dvnamic test activities to simulate for the condition of
six SRM stages being ignited at launch, followed by ignition of the
remaining two SRM stages after the six SRM stages are expended and
separated. This will cause a minor modification to the dynamic test
vehicle, tooling, equipment, tests and operations.

Table 5.3.4.0-I lists the various elements of get ready and development test
costs showing those elements which wili be modified. In addition, the cost of the
non-sequentially staged standard condiguration is shown for comparison, The
increase in the get ready and development test costs will be $1,788,000 (0.25
percent),

The recurring (first flight test unit) costs effects are summarized in
Table 5 . 3. 4. O-II'

The first unit cost for the SRM stage will be increased by approximately $600,000.
Cost increases of $160,000 for the core stage will include those for modification
of the forward skirt, a slight modification to the thickness of the tank walls,

an increase in the base plug insulation, and slight modifications to the breadboatd
and the launch operations.

To provide a comparison of the cost effectiveness, a vehicle program consisting

of 20 vehicles (2 R&D flights, 18 operational flights) using the sequentially
staged method versus the non-sequentially stage method was costed. The vehicle
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TABLE 5.3.4.0-1 GET READY AND DEVELOPMENT TEST COSTS FOR MLLV
CONFIGURATION WITH EIGHT 260" SRM STRAP-ON STAGES

STANDARD VERSUS SEQUENTIALLY STAGED

(OLLARS IN THOUSANDS)

FUNCTION OR COMPONENT

Fixed Get Ready Costs

GSE

Michoud Facility

Launch Complex Facility

SRM Facility and Tooling
Plus Design

Stage Structure Desigr
and Tooling

Forward Skirt

Suototal

Quantity Sensitive - Get Ready Costs (Excluding R&D Flight Tests)

260" SRM STAGE
(USING SEQUENTIALLY
STAGED SRMS)

$ 3,072
8,454
162,470

44,131

32,335

19,729

$270,191

GSE
Facility Manufacturing and
Launch

Subtotal

Development Test Costs

Stage Structural Test
Manufacturing Development
PFRT SRM

Other

Stage Structurc
wind Tunnel and SDF
Facility Test
DTV
Static Load

Subtotal

TOTAL

90

(=2

L
o2 ()]
Fo
et
)

L

5 57,900

3,809
118
69,321
14,758
33,037
5,533
30,219
19,508
4,940

$181,243
$509, 334

260" SRM'S

(ZERO STAGED)

3 3,072
8,434
162,470

44,131

32,285
19,729

$270,121

15,690

42,170

$ 57,860

3,789
118
69,321
14,758
33,037
4,975
30,219
18,508

4,830
$179,565
$507,546




TABLE 5.3.4.0-11 FIRST FLIGHT TEST UNIT COST COMPARISON OF
SEQUENTIALLY STAGED MODE VERSUS STANDARD
STAGED MODE FOR THE MLLV CONFIGURATION
CONSISTING OF A MAIN STAGE PLUS EIGHT STRAP-ON
260 INCH SRM'S

SEQUENTIALLY ZERO {
STAGED MODE STAGZD MODE
8 SRM Stages $103, 165,000 $102,565,000 (
Main Stage 372, 638,000 372,478,000

MLLV Configuration

Consisting of a Main Stage

Plus Eight Strap-On Stages

(Total Vehicle) $475,803,000 $475,043,000




5.3.4 (Continued)

configuration used for this comparison consisted of a main stage plus eight
260 inch SRM stages. This analysis showed that the total cost of the program
will be 8,987,900,000 for the vehicle configurations using ignition of all eight
SRM stages at launch, This gave a cost effectiveness of $284 per pound of
payload placed into orbit. Using the staged SRM sequentially staged concept,
the total program cost will increase by approximately 15 million dollars to
$9,002,900,000, In terms of cost effectiveness, the staged vehicle concept
will, however, deliver payload to orbit at a cost of $256 per pound,

In summary, the staged vehicle concept will significantly increase the
payload capability at only a minor increase in cost. This will result in a
much more cost effective vehicle.
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6.0 COST EFFECTIVENESS EVALUATION OF ALTER NATIVE TECH-
NOLOGY APPLICATIONS

This section presents parametric cost and performance data and illustrates the
methodology for its application to evaluate the cost effectiveness of alternative
technology applications to the baseline MLLV and AMLLV families. Such
evaluations can be used to determine the maximum dollars which can be ex-
panded. for an advanced technology alternative to replace the technology
specified for the baseline vehicle, without increasing overail cost for a speci-
fied program.

Application of technology alternatives to the main stage of either the MLLV or
AMLLV families should result in a change of the overall vehicle weight for a
given pzyload requirement. This change in vehicle weight will be reflected in
the weight or size (and associated costs) of the major elements comprising the
vehicle and of the required supporting facilities, equipment and tocling. Appli-
cation of the relationships of technology, size and cost with the proper method-
ology will give the cost/performance potential of alternative technologies.

The following tools for evaluation of the cost/performance potential of alter-
native technology applications to the baseline MLLV and AMLLYV families are
provided and discussed in the subsequent sub-sections:

a. Relationship of required main stage size, for a given payload, as a
function of specific impulse (Igp) and mass fraction ( A ).

b. Relationship of costs to main stage size.

¢. Methodology for cost effectiveness evaluation with representative examples
and conclusions.

6.1 RELATIONSHIPS OF REQUIRED MAIN STAGE SIZE TO TECHNOLOGY
IMPROVEMENTS

Application of technology improvements, such as increasing the mass fracticn
or increasing the specific impulse will result in reduction of the required over-
all vehicle launch weight to place a given payload in orbit. Figure 6.1.0.0-1
through Figure 6.1.0.0-8 illustrate the relationships of mass fraction ( A7)
and specific impulse (Igp) as a function of the vehicle weight for a specified
payload capability.

Figure 6.1.0.0-1 shows the required main stage weight of the AMLLYV single-
stage-to-orbit vehicle as a function of the main stage mass fraction ( A7 ) for
various values of specific impulse (Isp) . The baseline AMLLV main stage

(with multichamber /plug propulsion system) is identified by the triangle vhich
corresponds to the baseline stage weight of 11.8 million pounds, the associated




ST
. M

i
|
SINGLE STAGE TO A 100 N.M. ORBIT

- 97 -+ AV = 8,873 M/SEC
-t MULTICHAMBER/PLUG ENGINE SYSTEM
~L{ PAYLOAD WEIGHT FIXED AT 1.029
~_t—1 MILLION POUNDS
. 96 A AR T !

=]
(%7

©
s

@
W

[{=f
[\

- Isp |

T 0%

LT

: -3, 0%
~-1. 0%

~ NOM (ISp)
+1. 0%
=
‘+3. 09
~i 15, 0%/(

MAIN STAGE MASS FRACTION ( N

©
foury

SELE

904t

il
. 894+
L

|
eg L
8 12 16

g '
28 32
MAIN STAGE WEIGHT 10% POUNDS

FIGURE 6.1.0.0-1 AMLLV MAIN STAGE - MASS FRACTION VERSUS WEIGHT
FOR SINGL,E-STAGE-TO-CRBIT VEHICLE

130




sy AEW

NOTES:
, SINGLE STAGE TO A 100 N. M. ORBIT
i T AV = 8,873 M/SEC
o} " MULTICHAMBER/PLUG ENGINE SYSTEM
, { [ | PAYLOAD WEIGHT FIXED AT
- X177 1. 029 MILLION POUNDS L
&:\3 N .v‘{uu. ...... BE ' T 41
[ ¥
§ .
<
\
=
/5]
—_
=
! s
. @
. [l
i =
| 2
&,
4]
i a
=
5
7 <
P &
, >
<
& .
{ %
£
Q
[ =
: 3
4 e
=
i 4
N
-y
{
§
i
‘ |

8 12 16 20 24 28 32
MAIN STAGE WEIGHT : 106 POUNDS

FIGURE 6.1.0.0-2 AMLLV MAIN STAGE - SPECIFIC IMPULSE VERSUS WEIGHT
FOR SINGLE-STAGE-TO-ORBIT VEHICLE

131




NOTES:

" PAYLOAD WEIGHT TO A 100 N, M. ORBIT FIXED AT
73,471, 770 POUNDE

. 984

77T MULTICHAMBER/ PLUG ENGINE SYSTEM

e ’ : : o

T
i
- ' . A
T TP T v H [0t o SRy NS PR
; :
1
\

974

. 96—+t

©
e

934

MASS FRACTION ( \’)

.
[}
()

914

.90 4=+

6 8 10 12 14 16 18
MAIN STAGE WEIGHT + 10° POUNDS

FIGURE 6.1.0.0-3 AMLLV MAIN STAGE - MASS FRACTION VERSUS WEIGHT FOR
MAIN STAGE PLUS 12 STRAP-ON STAGES VEHICLE




NOTES:
PAYLOAD WEIGHT TO A 100 N, M. ORBIT FIXED
AT 3,471,000 POUNDS
AV = 8,780 M/SEC
MULTICHAMBER/PLUG

ENGINE SYSTEM

: \ B AR
b 1 PR U R VRO
RV 18
L

+6

)

PECIFIC IMPULSE -Algp (%)

Isp (NOM)$

D TRAJECTORY AVERAGED S

6 8 10 12 14 16 18

MAIN STAGE WEIGHT + 108 POUNDS

FIGURE 6.1.0.0-4 AMLLV MAIN STAGE - SPECIFIC IMPULSE VERSUS WEIGHT
FOR MAIN STAGE PLUS 12 STRAP-ON STAGES VEHICLE

133




0. 97— NOTES:

|“ I | SINGLE STAGE TO A 100 N.M. ORBIT

0. 964—AR-ite [l AV = 8,870 M/SEC

MULTICHAMBER/PLUG ENGINE SYSTEM

T
.

T PAYLOAD WEIGHT FIXED AT 471, 650 POUNDS
a Sprr o ‘ ~ ‘ oo

0. 95

\
\\':
}j ‘_ \: R Ah# 1 : el -‘l oL J R
x \ \ : ; ! E . E ‘ . : _1!
~ |\ -
¢ 0.94 % ‘:
~ R
Z —
= L
E:: BRTIEN Yt O EEEE I S S [ESE SIESOUREIS CEONE BUND S5 TR .—~?—<—|
0 0. 934+ e e - +
é AN PR IR R I N S . S A R
> e
wn
3 .
E .
)
&) A
< %
\4 i
2] 0N TXIN8 SEESY £3Ts: TN T
& 0.914—+t+ \
g — -50 0%
1 -

) -3- OI%
3
HE | i
-1 0%
NOMINAL

0.90

0. 89—l

b
+
o - R
.
(=)

0. 88 el - — .

MAIN STAGE WEIGHT — 108 POUNDS

FIGURE 6.1.0.0-5 MLLV MAIN STAGE - MASS FRACTION VERSUS WEIGHT FOR
SINGLE-STAGE-TO-ORBIT VEHICLE

134




O TRAJECTORY AVERAGED SPECIFIC IMPULSE -AIgp (%)

NOTES:

SINGLE STAGE TO 100 N, M. ORBIT

AV = 8,870 M/SEC
MULTICHAMBER/P1.UG ENGINE SYSTEM

PAYLOAD WEIGHT FIXED AT
471,650 POUNDS

+
o
- |

+4-
[V
4

+
(253
A

q-

: S
4 5
MAIN STAGE WEIGHT + 10% POUNDS

FIGURE 6.1.0,0-6 MLLV MAIN STAGE - SPECIFIC IMPULSE VERSUS WEIGHT
FOR SINGLE-STAGE-TO-ORBIT VEHICLE

135

P




NOTES:

MAIN STAGE PLUS 8 STRAP-ONS TO A
100 N, M, ORBIT
T T AV =8,740 M/SEC
' J( _¢7, 1 PAYLOAD WEIGHT FIXED AT
X" 1,756,869 POUNDS
\~ MULTICHAMBER/PLUG ENGINE SYSTEM

A

L P

r
Z
@]
E
5
=
w
75
<
=
<)
&}
<
B
w
Z
<
=

MAIN STAGE WEIGHT = 10° POUNDS

FIGURE 6.1.0.0-7 MLLV MAIN STAGE - MAES FRACTION VERSUS WEIGHT FGR
MAIN STAGE PLUS 8 STRAP-ON STAGES VEHICLE




NOTES:
MAIN STAGE PLUS 3 STRAP-ONS
_TO A 100 N.M. ORBIT

: i AV =8,740 M/SEC
: il PAYLOAD WEIGHT FIXED AT 1, 756,869
g L POUNDS

+
1
i

S e

S TMU

TICHAMBER/PLUG ENGINE SYSTEM
;.'1'1172..' 1,’:l1:." S : i .
T

1

+6%

AAAAAA

~

ATRAJECTORY AVERAGED SPECIFIC IMPULSE - O Igp @)

+3% M

Igp (NOMES

\
)
R

........

"6% ’w: : :;

ity
.1

it

Rt

MAIN STAGE WEIGHT < 106 POUNDS

FIGURE 6.1.0.0-8 MLLV MAIN STAGE - SPECIFIC IMPULSE VERSUS WEIGHT
FOR MAIN STAGE PLUS 8 STRAP-ON STAGE VEHICLE

137




ALISNId LNVTI1ad0dd SNSYIA NOLLOVHI SSVIW ADV.LS NIV 6-0°0°T1°9 JHNOI4

(cld ¥dd "SE'T) ALISNAA INVTT13dO¥d

08 0L 09 0§ 0y 0g 01
¢ ! . . Y — £6°0
i i » 4 + . .
) | | ,
w Lo I + +
. § | ' . o : . | . ﬁ ﬁ .o
. o : i u o : ¢k " : co
L b I . M.J 14Svd 1 {or
B = R PR
ﬂ v . ‘” : , § \ ¢ 4 M " “ 4 ,r L - +4 -4
o Lo _ : ‘ , T i,_‘ A=t
A SR SR G U I N B +_
WV . [ S— — \:'\Af # A,—y R G — ” — |L, lel.l*G oc
RS T 1 ATTN S ./ aNT1asve T
S NG T L L
A R b4 I B g s “ L la- MET bt |J .
, NS i U B [ R (O S T U T b (RN N S
- % 4 — 1 R t ~ q w i TlAﬁ ' i
B | ﬁ\ Y\\W Aﬁ 44 - ‘ . 4 Ll; | | D A S U
.m o _ : ” <
‘T‘L\L‘L‘JL * — —t L ;\\Aiéﬁvl 1\/_ <4 -# \a 4 M 4 <IH. ¢ 4 ”T \.L
, , ! , \ b i ,
w T w ; ‘ i h l\%\x T /Lﬁ ATINV T
! ¢_\+ t B T ! kv \\\ R A I!I‘Tfix 1 % +L aal
| | T i , .
SN S : : ,, ] e e e R S s e S RS S
| NT.TH \L\\T\,\,\LT\ | _, Hmws F_ 0 SRR &
A | | : ! W ,,
b } +- S ——t -t # 1 - -4
Pl w@ IS M B R _um_q\wmqj;-f .wl_‘ A S
L , ! o ,, oy ; vl
R VoAl i {441 bt T ; W e kg b i ,
, H"W.N_ | ::W.Nm A T e ML N R B H"mwdm - TL S S
. SRR T U A O 6 N O S A SEUE R
VooN/HWAn Tdd/X0T.. N R A T TR T BHT/XOT . .- b b i
¢ SOLLVY JUNLXIN B SLNVITIJO¥d = - - !

( X ) NOLLOVYJ SSVIN IADV.LS NIVIN

138



Suuny  GEw

P

R,

-y

- -

|

6.1 (Continued)

A~ of .94 and the nominal trajectory averaged Igp. This figure shows, for
example, that if the A“ is increased from .94 to .95 and the Isp remains con-
stant, the required main stage weight will decrease to 10.4 million pounds.

Figure 6.1.0.0-2 shows the required weight of the AMLLV main stage as a
function of trajectory averaged Igp for various values of A~. The baseline
vehicle is again identified by the triangle. If the trajectory averaged Igp is
increased by 5% at a constant A~ of 0.94, the required main stage weight w1l
decrease from 11.8 million pounds to 10.0 million pounds,

Figures 6.1.0.0-3 and 6.1.0.0-4 show similar relationships for the main
stage of the AMLLV main stage plus twelve strap-on stages vehicle configura-
tion. Figures 6.1.0.0-5 through 6.1.0.0-8 show similar relationships for the
main stage of the MLLV single-stage-to-orbit vehicle and the main stage of
the MLLV main stage plus eight strap-on stages vehicle configurations.

Figure 6.1.0.0-9 shows the effect of propellant density on stage mass fraction.
For this analysis the stage thrust and propellant weight were held constant. To
prepare the chart, it was assumed that changes in propellant density would
effect the length (and weight) of the propellant tank cylindr 1cal sections only.
As the propellant density was increased, the required length (and weight) of
the cylindrical section was reduced. Mixture ratios for LOX/LHy, LFy9/LHy,
LOX/RP-1 and UDMH/NgOQy4 propellants are shown for reference. This curve
used in conjunction with the curves of mass fraction and specific impulse ver-
sus main stage launch weight, shown in Figures 6.1.0.0-1 through 6.1.0.0-8,
can be used to determine the effects of a change of propellant density (and
specific impulse) on the required main stage weight to deliver a specified pay-
load weight to orbit.

6.2 SIZE /COST RELATIONSHIPS

The change in main stage weight as described above is reflected in changes in
the weight of the major vehicle systems and subsystems such as structure,
engines and propellants and in the size of supporting facilities, equipment and
tooling .

Figures 6.2.0.0-1 and 6.2.0.0-2 show the non-recurring ("'get ready" anrd
development test) costs for the MLLV and AMLLV single-stage-to -orbit ve-
hicles and for the ! LLV and AMLLV main stage plus full complement of strap-
on stage vehicles. The lines connecting the cost points show the cost trends
relative to main stage weights. Costs for the two R&D flights tests are not
included. To aid in application of the methodology defined in the following
section 6.3, the costs are grouped by the following categories:
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(Continued)

Main Stage Structure - Includes, as applicable to non-recurring ov
recurring costs, production costs of all main stage structures, struc-
tures for Dynamic and Facility Checkout Vehicles, static and dynamic
load tests and manufacturing development. Also included (as applicable)
are the delta costs for the heavyweight forward skirt.

Main Stage System and System Installation - Includes, as applicable to
non-recurring or recurring costs, production costs of all main stage
systems, system test, system development, and engine installation.

Main Stage Engines - Includes, as applicable to non-recurring or recurring
costs, production costs of all main stage engines.

SR M Strap-On Stages (as applicable) - Includes as appiicable to non-
recurring or recurring costs, production costs of SRMs structures and
motors, SRM GSE, SRM facilities, SRM manufacturing development,
SDF, static load, PFRT and wind tunnel.

Fixed Costs - Includes launch and manufacturing facilities, transportation,
GSE, Systems Breadboard (SDF), SE&I, Instrumentation Unit, wind tunnel
tests. manufacturing mockup and propellants.

Similarly, Figures 6.2.0.0-3 through 6.2.0.0-10 show the recurcing (produc-
tion and launch) costs for the MLVV and AMLLV single-stage-to-orbit vehicle
configurations and for the MLLV and AMLLV main stage plus full complement
of strap-on stage vehicle configurations. The cumulative recurring costs are
shown for various program sizes (6, 12, 24, and 36 operational launches plus
two R&D flight tests). Learning curve effects are included.

As shown by Figures 6.2.0.0-1 through Figure 6.2.0.0-10, there will be ¢
minimal cost reduction associated with reduction in size for main stage sys-
tems and for fixed items such as facilities, launch operations, GSE, etc.

The most appreciable cost/size relationship will be for main stage structure
and for main stage engines. The costs of these two elements will reduce by
approximately 30% as the vehicle size is reduced from the full size AMLLV
to the half size MLLV configuration. The total reduction in cost for this size
change will be approximately 19%.
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6.3 METHODOLOGY FOR COST EFFECTIVENESS EVALUATIONS

The preceding Figures 6.1.0.0-1 through 6.1.0.0-9 show the effect of tech-
nology variables on main stage weight. These data plus the cost versus size
data from the preceding Figures 6.2.0.0-1 through 6.2.0.0-10 provide the
required input data for evaluating the cost effectiveness of alternative tech-
nology applications to the primary stage of the baseline MLLV and AMLLV
families. The following representative examples show the methodology for
applying this data.

6.3.1 Lffects on Cost of Changes in Main Stage Mass Fraction

A representative example of the methodology for application of this data for
evaluation of alternative structure is shown in Figure 6.3.1.0-1. This figure

shows the maximum dollars, for R&D and a 36 AMLLV single stage to orbit
production and launch program, which can be expended for R&D and for production of
the advanced structure alternative (to replace the structure specified for the
baseline vehicle) without increasing the overall program cost.

For this particular example, the following conditions were considered or
assumed:

}; a. Vehicle: AMLLV single-stage-to-orbit vehicle - Main stage weight =
11.805 X 106 Ibs,

t’ b. Program Size: 36 launches @ 1,029,000 pounds of payload per launch.

(@)

System Investigated: Structures

PO ey

d. Technology change: Change in mass fraction from 2 = .94t0 A= .95

iy

The procedure was as follows:

a. The total cumulative AMLLV non-recurring cost of $2.53 billion was
determined from Figure 6.2.0.0-1.

-

b. The total cumulative AMLLV recurring cost of $10.35 billion was deter-
mined from Figure 6.2.0.0-6.

c. These costs (a and b above) were added to determine the total accumulative
costs of $12. 88 billion. (Plot point "A'" in Figure 6.3.1.0-1).

-—

d. The structure system cost was determined from Figure 6.2.0.0-1 and
6.2.0.0-6 as in steps a, b, and ¢ above to be $1.46 billion.

3
!
{
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€.3.1 (Continued)

e. The total baseline program cost (excluding structures) was determined to
be $11.42 billion (Plct point B in Figure 6.3.1.0-1) by subtracting step
(d) from step (c).

f. From Figure 6,1.0.0-1, using a AZ of 0.95 and the nominal trajectory
averaged Igp, the new AMLLV mzin stage weight of 10.4 X 106 1bs. was
determined.

g. From Figure 6.2.0,0-1 and 6.2.0.0-6, the total cumulative program costs
(excluding structure) for the new vehicle weight was determined to be
$11.14 billion (Plot point "C" in Figure 6.3.1.0-1).

Points A, B and C as derived by the above technique and plotted in Figure
6.3.1.0-1 formed the cost effectiveness parameters of the alternative struc-
tural technology to be investigated. The line connecting points B and C is the
cost reduction line; the slope of which indicates the degree of cost reduction
relative to size of the main stage. (The steeper this slope,the more cost re-
duction will be realized.)

The cost difference between points B and C of $280 million is the amount that
the total program costs, (exclusive of the cost of structures) for a program of
36 launches, will be reduced as a result of a decrease in vehicie launch weight
due to a change in mass fraction from A" =.94to A" =.95. The cost dif-
ference between points A and B of $1,460 million is the sum of the non-recur-
ring and recurring cost of the old structure to be replaced.

The total cost difference between points A and C is $1,720 million which is
then the maximum amount which can be expended for development and appli-
cation of the alternative structures if they are to be cost effective. The cost
for developing and producing of the alternative structures should, therefore,
not exceed the $1,720 million, otherwise, the new technology will not be eco-
nomically feasible and should warrant no further in-depth consideration.

Through the use of data presented in Figure 6.1.0.0-1 through 6.1.0.0-9 and
Figures 6.2.0.0-1 through 6.2.0.0-10, other similar analyses were conducted
for other vehicle configurations and other program sizes. The results of these
other analyses are shown in Table 6.3.1.0-1 and Figure 6.3.1.0-2.

Table 6.3.1.0-1 shows: 1) the cost reduction due to size reduction for im-
proved structure (excluding the cost of the baseline structures), 2) the cost of
the baseline structure and 3) the tctal dollars available for replacement of the
old baseline structural technology (cost reduction due to size reduction ex-
cluding cost of structures plus cost of the baseline structure). Cost data are
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6.3.1 (Continued)

shown for Phases A and B (less flight tests) and operational programs of 6. 12.
24 . and 36 (plus two flight tests each). The vehicles for which daca are depicted
are the MLLV single-stage-to-orbit vehicle, the MLLV main stage plus 8 SRMs
vehicle , the AMLLV single-stage-to-orbit vehicle and the AMLLV main stage
plus 12 SRMs vehicle. This table is somewhat difficult to interpret because of
the large variance in payloads between the various vehicle sizes. For example.
36 flights of the MLLV single-stage-to-orbit vehicle will deliver something less
than 18 million pounds to orbit while 36 flights of the AMLLV main stage plus

12 SR Ms vehicle will deliver 144 million pounds of payload to orbit.

Figure 6.3.1.0-2 was prepared to provide better visibility of the dollars avail-
able for new technology (for a 0.01 improvement in the main stage mass frac-
tion) relative to comparative payload programs. This figure shows the overall
program cost reduction due to vehicle size reduction and the total dollars avail-
able within the program for new structure to provide an improvement in main
stage mass fraction of 0.01. This figure shows that the single-stage-to-orbit
vehicles are more sensitive to technology improvements, i.e., more cost
reduction can be realized with the single-stage-to-orbit vehicles through tech-
nology improvements than for the vehicles consisting of main stages plus a

full complement cf strap-on stages. For a smaller program which requires

a few pounds of payload to orbit, Figure 6.3.1.0-2 indicates that the larger
(AMLLV) vehicles will have more dollars available for new structures tech-
nology than will the smaller (MLLV) vehicles. However, this chart further
indicates, that for larger payload programs, the smaller (MLLYV) vehicles

will have more dollars available for new structures technology. (The tabulated
data on 6.3.1.0-1 explains why this is so. The cost savings attributable to
technology changes for the AMLLV type vehicles during the A and B phases
will be considerably larger than the cost savings attributable to those or the
MLLV vehicles. Conversely, the size reduction resulting from alternative
structure applications and the cost of the baseline structures will result in
more available recurring dollars per pound of delivered payload for the MLLV
vehicles than for the AMLLYV vehicles.)

The data discussed above relates only to an improvement in main stage mass
fraction of 0.01 through the replacement of the baseline structure with an alter-
native advanced technology type structure. Similar trades can be performed

to define the dollars available for other values of main stage mass fraction
attributable to structural changes or to weight changes in engine systems, sub-
systems, etc. The same methodology as described above would be used.

To provide a better understanding of the cost implications of mass fraction,
Figures 6.3.1.0-3 through 6.3.1.0-5 are provided. These figures show the
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6.3.1 (Continued)

percent change in various program costs as a function of various changes in

mass fraction. Figure 6.3.1.0-3 which shows the cost sensitivity of non-re-
curring costs to main stage mass fraction, indicates that the largest savings

(as stated above) will accrue to the AMLLV type vehicles as opposed to similar
MLLV type vehicles. The single stage to orbit vehicles will have a more signifi-
cant cost sensitivity to mass fraction during Phases A and B than will the vehicles
with the full complements of strap-on stages.

A review of the sensitivity of recurring costs to main stage mass fraction. as
shown in Figure 6.3.1.0-4, also indicates that the larger (AMLLV) vehicles
will be more cost sensitive to changes in mass fractions than the smaller
(MLLV) vehicles. The single-stage-to-orbit vehicles will be more cost sensi-
tive than the vehicles with the strap-ons to changes in mass fraction.

A combination of the two prior charts to provide the sensitivity of total program
costs to main stage mass fraction is shown in Figure 6.3.1.0-5. This figure
gererally shows the same trends indicated above wherein the AMLLV configura-
tions will be more sensitive thun comparable MLLV configurations tc the changes
in mass fraction and wherein the single stage to orbit vehicles will be more sen-
sitive to chances in mass fraction than the vehicles with strap-on stages. For
the program size indicated (i.e., Phases A and B plus 20 million pounds of
operational payload to orbit), it appears that an improvement of 0.02 in main
stage mass fraction for the AMLLYV single-stage-to-orbit will result in an
approxim~te reduction in overall program costs of 7% . A reduction of 0.02 in
main stage mass fraction for this vehicle would increase program cost by
approximately 12%.

6.3.2 Effect on Program Cost of Changes in Specific Impulse

For a two percent improvement in main stage specific impulse, Table 6.3.2.0-1
shows: 1) the program cost reduction due to main stage size reduction for the
improved specific impulse (excluding the cost of the baselire multichamber /
plug engines), 2) the cost of the baseline engines and 3) the total dollars avail-
able for replacement of the baseline engine technology (cost reduction due to
size reduction excluding cost of engine plus cost of the baseline engine). Cost
data are tabulated for Phase A and B (less flight tests) and operational programs
of 6. 12, 24, and 36 (plus two flight tests each). The vehicles for which data
are depicted are the MLLV single -stage -to-orbit vehicle. the MLLV main stage
plus 8 SRMs vehicle. the AMLLYV single-stage-to-orbit vehicle and the AMLLV
main stage plus 12 SRMs vehicle.

To provide a better under standing of the cost implications of specific impulse.

Figures 6.3.2.0-1 through 6.5.2.0-3 are provided. These figures show the
percent change in various program costs as a function of changes in specific
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6.3.2 (Continued)

impulse. These figures indicate that the largest savings, from improvements
in specific impulse, will accrue to the AMLLV type vehicles as opposed to simi-
lar MLLV tvpe vehicles. The single-stage-to-orbit vehicles will have a more
significant cost sensitivity to specilic impulse than will the vehicles with a full
complement of strap-on stages.

For the program size indicated on Figure 6.3.2.0-3 (i.e.. Phases A and B
plus 20 million pounds of operational payload to orbit). it appears that an im-
provement of five percent in main stage engine specific impulse for the AMLLV
single-stage-to-orbit vehicle will result in an approximate reduction in overall
program costs of 5 percent. A reduction of five in main stage engine specific
impulse for this vehicle would increase program cost by approximately 7.5
percent.

6.3.3 Evaluation of Main Stage Engine Alternatives

A representative example of the methodology for evaluation of main stage engine
alternatives is shown in Figure 6.3.3.0-1. This figure shows the maximum
dollars: for R&D, production and launch of thirty-six MLLV single-stage-to-
orbit vehicles: which can be expended for R&D and production of the 2000 psi
chamber pressure toroidal/acrospike (to replace the multichamber ’plug engine
on the main stage) without increasing the overall program cost.

For this particular example the following conditions were assumed:

a. Vehicle: MLLV single-stage-to-orbit vehicle - main stage weight =
5.931 X 109 pounds.

b. Program Size: 36 launches @ 472,000 pounds of payioad per launch.

c. System Investigated: Engines

d. Technology Change: Removal of the multichamber /plug engine system and
replacement with a 2000 psi toroidal/aerospike engine (with eight modules).
This latter engine will provide a 1.17% lower value for trajectory averaged
specific impulse but its lower weight will result in an increase in the main
stage mass fraction from 0.936 to 0.943.

The procedure was as foilows:

a. The MLLV single-stage-to-orbit non-recurring cost of $2.044 billion was
determined from Figure 6.2.0.0-1.
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6.3.3 (Continued)

The total MLLV single-stage-to-orbit recurring cost for thirty-six vehicles
was determined from Figure 6.2.0.0-6 to be $8.962 billion.

These costs (a and b above) were then added to determine the total program
costs for the baseline vehicle of $11.006 billion (Plot point ""A' in Figure
6.3.3.0-1).

The cost of the multici:amber /plug engine system was determined from

Figures 6.2.0.0-1 and 6.2.0.0-6 (as in steps a, b and c above) to be $1.930
billion,

The total baseline program cost (excluding cost of the engine system) was
deter mined to be $9.076 billion by subtracting step d from step ¢. (Plot
point B of Figure 6.3.2.0-1).

From Figures 6.1.0.0-5 and/or 6.1.0.0-6, using the new values of Ig, and

A? (minus 1.0% and 0.943 respectively), the required new main stage
weight was determined to be 5.64 million pounds.

From Figures 6.2.0.0-1 and 6.2.0.0-6, the total accumulative new pro-
gram costs (excluding the costs of the new engine system) were determined
to be $9.019 billion (Plot point C on Figure 6.3.3.0-1).

The cost difference between poiits B and C of $57.0 million is the amount that
the total program costs (exclusive of the costs of engines) will be reduced as a
result of the decrease in main stage weight due to use of the alternative engine
system. The cost difference between points A and B of $1.930 billion is the
sum of the non-recurring and recurring costs of the multichamber /plug engine
to be replaced.

The total cost difference between points A and C of $1.987 billion, then is the
maximum amount which can be expended for development and application of the
alternative engine system if it is to be cost effective.

Similar MLLV trades considering the 1200 psia toroidal/aerospike engine (28
modules) showed that with tne lower Isp (3.07% lower) and the improved mass
fraction (from 0.936 to 0.945), the required main stage weight would decrease
to 5.905 X 106 pounds. The maximum availabie dollars for development and
application of this engine system (for a thirty-six unit operation program) is
1,936 billion dollars.
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7.0 COST REDUCTION ANALYSIS

The AMLLV/MLLYV design, resource and cost studies were based upon the
Saturn V design, development and production philosophies. No attempt was
made to cost optimize the vehicles. The design. resources, and cost activities
followed the Saturn V/S-IC philosophies to provide realistic output and to assure
that the resulting cost data would be relatively comparable to actual historical
Saturn V/S-IC data. The Saturn V philosophies to date have emphasized relia-
bility with cost as a secondary consideration. Through the successful flights
of the Apollo program, the reliability aspects have been proven and cost re-
duction is now receiving more emphasis. Currently, there are numerous
activities underway to reduce the cost of the Saturn V vehicle systems. These
studies have shown that costs may be reduced by from twenty-five to fifty per-
cent of the current costs as the program matures and as the design, manufac-
ture, test and launch philosophies are adjusted to better conform to the actual
requirements of the operational phase.

The Saturn V cost reduction data in conjunction with a review of the MLLV/
AMLLV study data was used to identify potential cost reduction areas for the
MLLV single-stage-to-orbit vehicle. Similar analyses can be conducted for
any of the MLLV/AMLLV configurations.

In the cost reduction analyses it was found that the results would he heavily
biased by the initial assumptions or limitations established for conducting the
analyses, i.e.:

a. Almost any modification to the vehicle which will increase its payload
capability will reduce the costs for a program requiring a fixed total

amount of payload to orbit (if the additional payload capability can be
utilized). This may not necessarily be the case,

b. If the required pzyload per launch of the vehicle is fixed, improvements
to the vehicle must be reflected by a reduced launch weight. This reduced
launch weight will also be reflected in reduced program cost. This latter
cost reduction (for the fixed payload per launch case) will, however, be
only approximately 25 percent of that cost reduction possible if ai increase in
is allowable.

Either of the above assumptions could be valid depending on the specific cir-
cumstances. A review of any of the data in this bouk should be accomplished
considering both of these assumptions.

7.1 POTENTIAL AREAS FOR COST REDUCT'ON
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7.1.1 R&D Flight Tests

The baseline development test plan specifies two vehicles for R&D flight testing
prior to manned flight. Each R&D flight test will consist of the launch of a highly
instrumented launch vehicle with a dummy payload. If these R&D test vehicles
could be utilized to deliver useful unmanned payloads, a significant reduction in
program costs would be achieved. These payioads should be such that they wculd
not be critical and could be replaced should the R&D tests be unsuccessful. The
two R&D flight tests costs for the MLLV single-stage-to-crbit vehicle will be
731.8 miilion dollars. If useful payloads could be flown, the majority of this
cost could be saved, i.e., $529.8 million. Ceria’n costs due to the longer launch
cycle and to the increased instrumentation requirements, etc., would. however .
still be attributed to these tests.

7.1.2 Dynamic Tests

Dynamic tests are specified to verify the structural and vibration characteristics
of the launch vehicle by simulated flight dynamic loads. These tests will re-
quire a dynamic test stand and structurally complete stages less electrical and
hydraulic components, engines and subsystems. (These latter elements will be
simulated with appropriately mounted lump raasses.) The structural components
utilized in these tests will not be reused in the baseline flight program. For cost
reduction, 1) the dynamic tests could possibly be deleted or 2) the dynamic tests
could be conducted and the vehicle structural elements later used in a future non-
critical unmanned vehicle launch. With the first approach, 53.1 million dollars
could be saved from the MI.LV single-stage-to-orbil dcvelopment test program
or with the second approach,25.& million dollars could be saved from the opera-
tional program.

7.1.3 Facilities Checkout Vehicle

A facilities checkout vehicle ("'¥'' vehicle) was specified in the baseline program
to determine the physical and functional compatibility of the stages and vehicle
to the production, test and launch facilities; the equipment; the tooling and the
procedures. The "F'" vehicle will be essentially a complete vehicle with only
the engines and some minor systems deleted. If the "F" vehicle could be de-
leted from the program, ‘he savings would not be too significunt as the tests
performed using the facilities checkout vehicle would still have to be performed.
If, however, the first R&D vehicle could be used for these tests. the deletion

of the requirement for the separate facilities checkout vehicle hardware would
reduce the non-recurring MLLV single-stage-to-orbit costs by 41 million
dollars.
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T.1.4 Static Tests

Static test firings of the main stage will be used in the baseline program to verity
propulsion and control systems and to verify capability of all systems to tunction
under the environment generated with full thrust. Under the AMLLV MILLV test
and launch concept, the static firingz tests will be performed at the launch site in
the launch position. Deletion of static testing. therefore. would not sigrificantly
reduce facility , equipment or tooling requirements nor delete the major costs
associated with the test stand as these elements would still be required for launch.
However . deletion of static testing would reduce the time line for the launch cvele
by 14 1 2 weeks. i.e.: 41 2 weeks required for static testing of the stage. three
additional weeks required fcr silo refurbishment. and sev.n weeks required tor
stage refurbishment. The total bascline launch cycle with static testing is 32
weeks. Deletion of the static tests would reduce this time to 17 1 2 weeks and
permits the launcing of three vehicles per year from one launch pad instead of
the two specified by the baselinz program. (This could result in a cost savings
of 373 million dollars for an additional launch complex should a rate of three

per year be required. Recurring cost savings from better facility utilization
would be 62 million doilars per launch.), If the launch rate remains at two per
yvear. then these savings would not be achieved. Approximately 27 million dol-
lars per MLLV single-stage-to-orbit watld be savad by the Jdeletion of the static
firing tests. This assumes that the izunch facilicy manhours can be reduced by
the manhours required for static test (allowable variable launch facility head-
count.) If a constant headcount is required. the o .ly coct savings would be that
associated with the reduction in instrumentation, parts refurbishment. and fuel.
This cost savings would be only one million dollars por vehicle.

T.1.5 Main Stage Propulsion System (Two Position Nozzle)

The baseline multichamber plug engine propulsicn system will contain a single
position nozzle. Utilization of the two position no.zle (see Section 4.3.1.1,
Volume II) would reduce the cost of the aft portion of the nozzle exit cone and

at the same time reduce the size of the rejuired engin¢ system by providing
improved sea level performance. The combination of lower weight and im-
proved performance would not only reduce the cost of the engine but would also
prov.le an increase of 2,536 pounds in orbital pavload capability for the MLLV
single-stagr-to-orbit vehicle. This wonld have a significant effect on the recur-
ring costs of programs where pavload size was not limited. The cost savings
on a 36 vehicle production program of the MLLV single-stage -to-orbit vehicle
configuration for example would be approximately 50 million dollars. This
value includes the savings resulting from the lower cost smaller engine system.
and the savings that can be attributed to the increased payloads put up by the
vehicles containing this engine system. (Note: If the payload capability of the
vehicle is held constant at the baseline value and the overall vehicle size is re-
duced to compensate for the improved performance as disrcussed in Section 6.0,
the resulting cost saving for the program will be $13 million.)
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7.1.6 Base Plug

With the use of the 24 multichamber /plug engine modules (each having the two
position nozzle), it may be possible to delete the base plug with only a minor
loss in engine performance . A preliminary estimate of the savings is 55.4
million dollars for a vehicle program consisting of 36 launches of the MLLV
single-stage-to-orbit vehicie configuration. Further performance trades are
required to verify this estimate.

7T.1.7 Instrumentation

The systems poction of the MLLV vehicle costs will be significantly greater

than the cost of the structure. An analysis of these system costs indicate that
while the majority of the systems are required, a portion of the costs are attr ib-
utable to redundant and/or excessive instrumentation. A reduction in this in-
strumentation could reduce the recurring costs by approximately 6.6 million
dollars for the 36 vehicle MLLV single-stage-to-orbit vehicle program.

7.1.8 Major Component Tests

The sub-components and the major components that make up the main stage of
the MLLV vehicle will each be subjected to separate tests and to extensive
quality and reliability assurance operations. For example, the individual com-
ponents of the hydrogen and LOX tanks will be subjected to numercus interim
tests prior to the ultimate hydrostatic and mating tests. Similarly. the engines
will be tested by the engine manufacture several times prior to receipt at the
assembly facility. At the assembly facility, they will then be subjected to sub-
svstems and interface tests and later to actual static firing test at the launch
site. Similar type tests will be performed at successive levels of assembly

on the electrical and hydraulic components. A reduction in the amount of test-
ing through test deletion and/or by combined systems testing would significantly
reduce the costs of a stage. This number is not readily available without an
extensive detailed analysis of historical data. However, a best engineering
estimate of this cost saving is 4.1 million dollars per vehicle. For a 36 MLLV
single -stage-to-orbit vehicle program. this would amount to a saving of 108
million dollars.

7.1.9  Design Philosophy

The design philosophy utilized for the AMLLV/MLLV was based upon that used
in the Saturn V program which maximized the safety and reliability. Reducing
this reliability slightly by increasing fabrication tolerances. reducing safety
factors. and changineg some of the design formula utilized to determine the size
and shape of the structures could result in a significant decrease in stage we ight
and or complexity. This could have effects of decreasing the cost of fabrication




7.1.9 (Continued)

and’or increasing the payload capability for a fixed vehicle size. For example.
a reduction in the safety factor from 1.4 to 1.25 for load carrying structures
would increase the payload of the MLLV single stage to orbit vehicle by approxi-
mately 6 percent. For a given program payload requirement equivalent to
launch of 36 baseline vehicles, the estimated cost saving is $928.7 million.
(Note: If the payload capability of the vehicle is held constant at the baseline
value and the overall vehicle size is reduced to compensate for the reduced
structure weight; as discussed in Section 6.0; the resulting cost saving to the
program will be $228 million.)

7.1.10 Manufacturing Procedures

The production concept utilized in the fabrication of the Saturn V vehicles to date
is one which provides specific areas for each type operation on each major com-
ponent with separately assigned workers to each of these areas. While this
concept improves reliability, by giving each worker a limited specific job to
accomplish, and is efficient and cost effective for fabrication of large quantities
of vehicles, it does not lend itself to low cost with a small production rate.

Also with the concurrent changes in part design for successive units, flow
through the production sequence must be paced by the time required to imple-
ment the change orders as they result from tests of similar earlier parts. Sig-
nificant cost reductions at low production rates may be realized if the production
is handled on a ""model shop" basis where the workers have several different

but related functions such that when a function is completed the workers can then
accomplish the next successive similar operation. This approach would result
in 2 minimum "idle" time with a significant reduction in the manufacturing man-
hours required to do a job. For the production and launch rate of two per year.
it is estimated that savings of approximately 1,130 million dollars could be
realized for a 36 MLLV single-stage-to-orbit vehicle program.

7.1.11 On-Board Test and Checkout

An on-board test and checkout system was described in Volume II (MLLV Design)
of this report. In addition. its impact on the schedule and launch was discussed
in Volume III, (Resource Implications). However. all of the cost data was gen-
erated without regard to having on-board test and checkout capability as the im-
pact of these systems could not be realistically assessed. It is obvious that
utiiization of the on-board tests and checkout systems while increasing direct
production costs would significantly reduce the large number of personnel re-
quired for pre-flight test and checkout operations. In addition, there would be
some reduction in the test costs associated with interim manufacturing test
operations. An estimate of savings that could possibly be realized with this
system is approximately 150 million dollars for a thirty-six MLLV single-stage-
to-orbit vehicle program.
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.2 PROGRAM IMPACT OF COST REDUCTIONS

To assess the combined impact of all of the above cost reduction techniques. a
program consisting of the '"get ready’, development test. manufacture and launch
of 36 MLLV single stage to orbit vehicles was made. The baseline cost for this
program will be $11 billion. The 36 operational launches will put into orbit
16.979,000 pounds of payload at a total program cost of 648 dollars per pound.

Table 7.2.0.0-I lists the cost elements, as discussed above, where cost savings
potential exist. The elements are listed in a sequence progressing irom those
which have the least potential risk to those which have the most potential risk.
The amount of dollars that can be saved with each of these elements. as shown,
include savings in both non-recurring and recurring costs. The overall included
non-recur~ing cost savings of $1.6 billion encompass deletion of the facilities
checkout \ehicle, deletion of dynamic test, base plug deletion for Phases A and
B. design philosophy simplification and the use of the first two R&D flights for
delivery of unmanned non-critical payload. The overall recurring includes cost
savings for the 36 vehicle operational program of $2.4 billion encompass static
test deletion, major component test reduction, instrumentation reduction, base
plug production deletion, engine nozzle modifications. changes to the manufac-
turing procedures and to the addition of the on-board test and checkout system
to the vehicle. The total maximum potential cost savings is $4.0 billion for the
Phases A and B plus 36 launches. This reduction would result in a total pro-
gram cost of delivered payload of $412 per pound.

The data shown in Table 7.2.0.0-1 shows that the majority of the program cost
savings that can be realized will result from changes in design, manufacture.
test and launch philosophies. Application of design or configuration alternatives
will result in only minor cost savings if the current philosophies are maintained.
Of the potential savings of $4 billion, only the following savings are not attribu-
table to changes in program philosophy:

Item Potential Savings
Use of On-Board Test and Checkout $150M
Engine Nozzle Modification 50M
Base Plug Deletion 55M
Instrumentation Reduction 1M
TOTAL $262M

The sum of these elemeats represents only 6 1 '2 percent of the overall potentiat
savings shown.
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TABLE 7.2,0.0-1I

RISK RATING

1

10

11

COST REDUCTION FOR SINGLE STAGE TO ORBIT MLLV
PROGRAM CONSISTING OF 36 VEHICLES

COST ELEMENT

2 R&D Flights

On Board Test & Checkout
Manufacturing Procedures
Engine Nozzle Modification
Base Plug Deletion

Facilities Checkout Vehicle
Deleted

Instrumentation, Reduction

Major Component Test
Reduction

Dynamic Test Vehicle
Deletion

Static Test Deletion
Design Philosophy

TOTAL

COST REDUCTION

$ 530 Million

150 Million

1,130 Million
50 Million (13M¥*)

55 Million

41 Million

7 Million

108 Million

53 Million
970 Million

929 Million (228M*)

$4, 023 Million

*As applicable, numbers in parentheses represent program cost savings if payload of each
vehicle is maintained constant and overall size of the vehicle is reduced to compensate for
the lower inert weight and/or increased performance, Other numbers represent

cost savings if payload capability is allowed to increase and that this increased
capability per launch can be used to reduce the number of launches or increage
the effectiveness of the program by providing more payload per launch.




3.0 PROGRAM MANAGER'S ASSESSMENT

The final portion of the study activity consisted of a critical review of the data
and study results by the program manager and members of the study team. This
review indicated that this study (and the reference study) had resulted in a de-
tailed conceptual design for launch vehicles which is attractive in terms of both
cost performance and payload potential. This concept makes use of the opera-
tional simplicity of a single stage vehicle to transport payload to earth orbit.
The Saturn V /Apollo program and related activities have advanced the technology
hase to the point that such a system is now feasible and can be developed and im-
plemented within the current stage-of-the-art. The use of strap-on stages and
injection stage modules in conjunction with the main stage (as developed for the
single-stage-to-orbit application) will provide a series of vehicles capable of
providing a range of payloads extending from that of the single-stage-to-orbhit
configuration up to four times that of the single-stage-to-orbit configuration,
The flexibility and simplicity offered by these configuration options can provide
significant cost advantages relative to previously considered systems for hoost-
ing large heavy payloads.

These studies. which investigated size effects, indicate that the single-stage-
to-orbit concept (with its various payload augmentation options) is applicable
to a wide range of payload requirements and as such, a specific vehicle family
could be tailored to accomplish any spectrum of missions.

This study also resulted in a comprehensive plan for implementation and opera-
tion of such vehicle systems with supporting cost detail. As the resource and
cost data were developed in accordance with current operational philosophies
and costing procedures, the results are directly comparable to existing data

for current systems. The results define a fixed yardstick against which future
improvements to improve performance or minimize cost can be measured. \With
the resulting data and the methodology developed for its use. the priorities for
improving technology can be assessed relative to their cost /performance poten-
tial.

The results of this study and the detailed data developed are in sufficient depth
to provide a comprehensive reference for follow-on Phase B activities. The
method of presenting the data should provide a detailed format and guide for
subsequent Phases B. C and D activities,

The study review indicated. however, that certain areas of the study received
a disproportionate emphasis, The review also indicated certain minor incon-
sistencies hetween the design, resource and cost data.

Of the resource data generated, for example, the vehicle structures received
far more emphasis than the other vehicle systems. FEven though the estimated
cost for the launch facility implementation and operation represented between
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30 to 50 percent of the total program cost, less emphasis was placed on detail

in this area than any cf the areas. A more detailed breakdown of the costs asso-
cinted with the launch facility and operations is required, While the estimates
were provided from people actively working the launch area. it is felt that the
estivautes more nearly relate to current operations rather than to the AMLLV
and MLI\V vehicles, For example, according to the Chrysler "National Space
iooster Study”, the launch cost for a three stage Saturn V' at the rate of two per
vear will be approximately 384,000,000, While the MLLV single-stage-to-orbit
vehicle will deliver twice the payload to orbit of a two stage Saturn V vehicle.

its liftoff weight will be almost identical to that of the two stage Saturn V vehicle.
The single-stage-to-orbit vehicle has only one stage wherein the Saturn V refer-
ence vehicle has three stages, The Saturn V also consists of two different pro-
vellant systems: a LOX/RP-1 and a LOX/LHg system. The cost estimates,
however. despite the weight similarities and fewer number of components attril,-
utable to the MLLV, show that the launch operations cost for the MLLV single-
stage-to-orbit vehicle. at a rate of two per year. will be $88.500.000 per vehicle

as compared to $84,000.000 for the three stage Saturn V vehicle. Logic indi-
cates that the MLLV launch costs should be on the order of 20 to 25 percent less
than those shown. A more detailed study of the launch facility would previde
cost estimates to a greater depth and would improve the confidence in the num-
hers senerate!.

By study groundrules, the location for the launch facility will be on land in the
Launch Complex 39 area, The acoustical studies showed that many of the dif-
ferent possible configurations for the MLLV and AMLLV families could not be
launched trom such a site without creating a severe acoustical problem in the
surrounding inhabited areas. As little can be done to reduce the launch noise
that would occu. from the rocket exhaust. the only practical solution would be
to move the launch facility to a more remote site. This could be accomplished
bv locating the fucility on some of the sand bars off shore at Cape Kennedy.
locating the facility on offshore islands. or use of a floating launch facility .
The launck complex shown was defined as a feasible facility, however. no de-
tail studies were accomplished to optimize such a facility and its operations,
There are many alternative ways for launching the vehicles other than the ones
shown which mav be more adaptable to location at these alternative sites.

I-ven though an on-board test and checkout system was specified by the design
concept. the impact of such a system on the resource requirements could not
adequately be assessed by this study. In the area of launch operations. such a
system should drastically reduce the costs. Incorporation of such a svstem,
however . would increase the initial cost for the design and development of the
svstems ond would also increase costs for manufacturing and installation of the
syatems. Additional studies are required to define in detail: (1) the specific
requirements for each of the on-board test and checkout elements as they relate
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to their assigned subsystems, (2) the interface and integratea operation of the
combined on-board test and checkout elements and (3) the necessary procedures
and operations which should be associated with producing, testing and launching
vehicles incorporating such systems.

Additional study is required to more adequately define the thermal environment
in the base region during the flight regime. The best method of cooling this
region should be defined through further design studies.

A review of the stress analysis showed that the toroidal tanks of the injection
stage modules were designed for the cut-off acceleration of the maximum puy-
load vehicles (i.e., main stage plus eight SRM stages plus a three module in-
jection stage) of approximately 3.9 g's. The vehicle consisting of a main stage
and a single module injection stage will fly a trajectory, however, such that the
vehicle acceleration at cutoff of the main stage will be approximately 8 g's.
This cutoff condition will, therefore, be beyond the design capability of toroidal
tanks. Additional stress analysis and design detail is required to modify the
design of the injection stage tankage such that it is adaptable to all of the poten-
tial vehicle configurations.

The review also showed that the specified design would not adapt to all of the
possible eighteen configurations. To provide this total flexibility some addi-
tional studies are required to slightly modify the trajectories to minimize the
loads for certain specific configurations (such as the main stage plus two strap-
on stages in the parallel burn mcde). These trajectory modifications can be
made such that the current design is acceptable to all of the potential configura-
tions without seriously degrading the performance of any of the particular con-
figurations,

Several numerical errors in the recording and buildup of cost data were un-
covered during the assessment. Those errors which would have resulted in a
significant variance in the study results, were cerrected and the costing analy-
ses and methodology were updated to incorporate these corrections. Certain
small errors, which would not significantly effect the study results, were left
uncorrected in order to avoid redoing the detailed compilation from raw data
inputs through the detail cost buildups to the costing methodology.

The preparation of the figures and tables in this document wns accomplished
through consziderable effort in abstracting the specific data from the butk of
data available. Lengthy computations were required to compile this data in a
meaningful manner. These computations for the most part were accomplished
manually. As stated above, many errors resulted during the detailed manual
computation and transcribing of the data. These required extensive correction
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and rework of the cost analyses. To improve the facility for similar cost analy-
ses in the future, it is recommended that computer storage of the cost data be
provided with the provision for easy access and updating of the data as required.
In conjunction with the storage, a computer program with the capability of per-
forming at least all of the calculations requ ired for this volume should be pro-
vided. With this tool and the methodology developed by this report, detailed
cost analyses could be run on a variety of systems in a matter of hours with
minimal error (as compared to manual computation). The eifects of changing
costs due to improved design, different philosophy or changes in pricing factors
could be evaluated expeditiously by changing the data in storage, machine com-
putation of the problems, and selected data print-out.

The studies indicated, that while costs can be affected by certain design or con-
figuration improvements, operational and implementation philosophies primarily
will determine the program costs. The one time use of the expendable vehicle
components is a major cost driver. Further studies should be accomplished to
cost optimize the vehicle design, to define low cost implementation and opera-
tional philosophies and to consider the potential of recovery and re-use of the
main stage hardware.

Prior to implementation of systems such as the AMLLV and MLLV, many ad-
vances probably will be made in new materials and processes. The potential of
these materials should be identified and studies conducted to show the proper
methods for incorporation of these materials into the vehicle systems. Detailed
resource plans similar to those provided for the baseline vehicles (with aluminum
structures) should be prepared for selected structural material alternatives.
Associated costs should then be determined and compared to the baseline costs.
Such studies should be accomplished on a re~urring periodic basis.
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